mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			115 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			115 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| /*
 | |
|  *  This file is part of the X10 project (http://x10-lang.org).
 | |
|  *
 | |
|  *  This file is licensed to You under the Eclipse Public License (EPL);
 | |
|  *  You may not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *      http://www.opensource.org/licenses/eclipse-1.0.php
 | |
|  *
 | |
|  *  (C) Copyright IBM Corporation 2006-2014.
 | |
|  */
 | |
| 
 | |
| import x10.array.*;
 | |
| import x10.compiler.Foreach;
 | |
| import x10.util.Team;
 | |
| 
 | |
| /**
 | |
|  * This is a sample program illustrating how to use
 | |
|  * X10's distributed array classes.  It also illustrates the use
 | |
|  * of foreach to achieve intra-place parallelism and the mixture
 | |
|  * of APGAS finish/async/at with Team collective operations.
 | |
|  *
 | |
|  * This version of the program uses a vanilla DistArray without
 | |
|  * ghost regions.  As a result, the stencil function does
 | |
|  * inefficient fine-grained neighbor communication to get individual values.
 | |
|  * Compare this to HeatTransfer_v2 which utilizes ghost regions and
 | |
|  * bulk ghost-region exchange functions.
 | |
|  * 
 | |
|  * The program solves a set of 2D partial differential
 | |
|  * equations by iteratively applying a 5-point stencil
 | |
|  * operation until convergence is reached.
 | |
|  */
 | |
| public class HeatTransfer_v1 {
 | |
|     static val EPSILON = 1.0e-5;
 | |
| 
 | |
|     val N:Long;
 | |
|     val A:DistArray_BlockBlock_2[Double]{self!=null};
 | |
|     val Tmp:DistArray_BlockBlock_2[Double]{self!=null};
 | |
| 
 | |
|     public def this(size:Long) {
 | |
|         N = size;
 | |
|         val init = (i:Long, j:Long)=>i==0 ? 1.0 : 0.0;
 | |
|         A = new DistArray_BlockBlock_2[Double](N+2, N+2, init);
 | |
|         Tmp = new DistArray_BlockBlock_2[Double](N+2, N+2, init);
 | |
|     }
 | |
| 
 | |
|     final def stencil(x:Long, y:Long):Double {
 | |
|         val cls = (dx:Long, dy:Long)=>{
 | |
|             val p = A.place(x+dx, y+dy);
 | |
|             p == here ? A(x+dx,y+dy) : at (p) A(x+dx,y+dy)
 | |
|         };
 | |
|         val tmp = cls(-1,0) + cls(1,0) + cls(0,-1) + cls(0,1);
 | |
|         return tmp / 4; 
 | |
|     }
 | |
| 
 | |
|     def run() {
 | |
|         val myTeam = new Team(A.placeGroup());
 | |
|         finish for (p in A.placeGroup()) at (p) async {
 | |
|             // Compute the subset of the local indices on which
 | |
|             // we want to apply the stencil (the interior points of the N+2 x N+2 grid)
 | |
|             val li = A.localIndices();
 | |
|             val interior = new DenseIterationSpace_2(li.min(0) == 0 ? 1 : li.min(0),
 | |
|                                                      li.min(1) == 0 ? 1 : li.min(1),
 | |
|                                                      li.max(0) == N+1 ? N : li.max(0),
 | |
|                                                      li.max(1) == N+1 ? N : li.max(1));
 | |
|             var delta:Double;
 | |
|             do {
 | |
|                 // Compute new values, storing in tmp
 | |
|                 val myDelta = Foreach.blockReduce(interior,
 | |
|                     (i:Long, j:Long)=>{
 | |
|                         Tmp(i,j) = stencil(i,j);
 | |
|                         // Reduce max element-wise delta (A now holds previous values)
 | |
|                         return Math.abs(Tmp(i,j) - A(i,j));
 | |
|                     },
 | |
|                     (a:Double, b:Double)=>Math.max(a,b), 0.0
 | |
|                 );
 | |
| 
 | |
|                 myTeam.barrier();
 | |
| 
 | |
|                 // Unlike Array, DistArray doesn't provide an optimized swap.
 | |
|                 // So, until it does, we have to copy the data elements.
 | |
|                 Foreach.block(interior, (i:Long, j:Long)=>{
 | |
|                     A(i,j) = Tmp(i,j);
 | |
|                 });
 | |
| 
 | |
|                 delta = myTeam.allreduce(myDelta, Team.MAX);
 | |
|             } while (delta > EPSILON);
 | |
|         }
 | |
|     }
 | |
|  
 | |
|    def prettyPrintResult() {
 | |
|        for (i in 1..N) {
 | |
|            for (j in 1..N) {
 | |
|                 val x = at (A.place(i,j)) A(i,j);
 | |
|                 Console.OUT.printf("%1.4f ", x);
 | |
|             }
 | |
|             Console.OUT.println();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     public static def main(args:Rail[String]) {
 | |
|         val n = args.size > 0 ? Long.parse(args(0)) : 8;
 | |
|         Console.OUT.println("HeatTransfer example with N="+n+" and epsilon="+EPSILON);
 | |
|         Console.OUT.println("Initializing data structures");
 | |
|         val ht = new HeatTransfer_v1(n);
 | |
|         Console.OUT.println("Beginning computation...");
 | |
|         val start = System.nanoTime();
 | |
|         ht.run();
 | |
|         val stop = System.nanoTime();
 | |
|         Console.OUT.printf("...completed in %1.3f seconds.\n", ((stop-start) as double)/1e9);
 | |
|         if (n <= 10) {
 | |
|             ht.prettyPrintResult();
 | |
|         }
 | |
|     }
 | |
| }
 |