mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			420 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Coq
		
	
	
	
	
	
			
		
		
	
	
			420 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Coq
		
	
	
	
	
	
(** Sketch of the proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m
 | 
						|
 | 
						|
  - preliminary results on the irrelevance of boundedness proofs
 | 
						|
  - introduce the notion of finite cardinal |A|
 | 
						|
  - prove that |{p:nat|p<=n}| = n
 | 
						|
  - prove that |A| = n /\ |A| = m -> n = m if equality is decidable on A
 | 
						|
  - prove that equality is decidable on A
 | 
						|
  - conclude
 | 
						|
*)
 | 
						|
 | 
						|
(** * Preliminary results on [nat] and [le] *)
 | 
						|
 | 
						|
(** Proving axiom K on [nat] *)
 | 
						|
 | 
						|
Require Import Eqdep_dec.
 | 
						|
Require Import Arith.
 | 
						|
 | 
						|
Theorem eq_rect_eq_nat :
 | 
						|
  forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h.
 | 
						|
Proof.
 | 
						|
intros.
 | 
						|
apply K_dec_set with (p := h).
 | 
						|
apply eq_nat_dec.
 | 
						|
reflexivity.
 | 
						|
Qed.
 | 
						|
 | 
						|
(** Proving unicity of proofs of [(n<=m)%nat] *)
 | 
						|
 | 
						|
Scheme le_ind' := Induction for le Sort Prop.
 | 
						|
 | 
						|
Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
 | 
						|
Proof.
 | 
						|
induction p using le_ind'; intro q.
 | 
						|
 replace (le_n n) with
 | 
						|
  (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
 | 
						|
 2:reflexivity.
 | 
						|
  generalize (refl_equal n).
 | 
						|
    pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
 | 
						|
     rewrite <- eq_rect_eq_nat; trivial.
 | 
						|
     contradiction (le_Sn_n m); rewrite <- e; assumption.
 | 
						|
 replace (le_S n m p) with
 | 
						|
  (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
 | 
						|
 2:reflexivity.
 | 
						|
  generalize (refl_equal (S m)).
 | 
						|
    pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
 | 
						|
     contradiction (le_Sn_n m); rewrite Heq; assumption.
 | 
						|
     injection HeqS; intro Heq; generalize l HeqS.
 | 
						|
      rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat.
 | 
						|
      rewrite (IHp l0); reflexivity.
 | 
						|
Qed.
 | 
						|
 | 
						|
(** Proving irrelevance of boundedness proofs while building
 | 
						|
    elements of interval *)
 | 
						|
 | 
						|
Lemma dep_pair_intro :
 | 
						|
  forall (n x y:nat) (Hx : x<=n) (Hy : y<=n), x=y ->
 | 
						|
    exist (fun x => x <= n) x Hx = exist (fun x => x <= n) y Hy.
 | 
						|
Proof.
 | 
						|
intros n x y Hx Hy Heq.
 | 
						|
generalize Hy.
 | 
						|
rewrite <- Heq.
 | 
						|
intros.
 | 
						|
rewrite (le_uniqueness_proof x n Hx Hy0).
 | 
						|
reflexivity.
 | 
						|
Qed.
 | 
						|
 | 
						|
(** * Proving that {p:nat|p<=n} = {p:nat|p<=m} -> n=m *)
 | 
						|
 | 
						|
(** Definition of having finite cardinality [n+1] for a set [A] *)
 | 
						|
 | 
						|
Definition card (A:Set) n :=
 | 
						|
  exists f,
 | 
						|
    (forall x:A, f x <= n) /\
 | 
						|
    (forall x y:A, f x = f y -> x = y) /\
 | 
						|
    (forall m, m <= n -> exists x:A, f x = m).
 | 
						|
 | 
						|
Require Import Arith.
 | 
						|
 | 
						|
(** Showing that the interval [0;n] has cardinality [n+1] *)
 | 
						|
 | 
						|
Theorem card_interval : forall n, card {x:nat|x<=n} n.
 | 
						|
Proof.
 | 
						|
intro n.
 | 
						|
exists (fun x:{x:nat|x<=n} => proj1_sig x).
 | 
						|
split.
 | 
						|
(* bounded *)
 | 
						|
intro x; apply (proj2_sig x).
 | 
						|
split.
 | 
						|
(* injectivity *)
 | 
						|
intros (p,Hp) (q,Hq).
 | 
						|
simpl.
 | 
						|
intro Hpq.
 | 
						|
apply dep_pair_intro; assumption.
 | 
						|
(* surjectivity *)
 | 
						|
intros m Hmn.
 | 
						|
exists (exist (fun x : nat => x <= n) m Hmn).
 | 
						|
reflexivity.
 | 
						|
Qed.
 | 
						|
 | 
						|
(** Showing that equality on the interval [0;n] is decidable *)
 | 
						|
 | 
						|
Lemma interval_dec :
 | 
						|
  forall n (x y : {m:nat|m<=n}), {x=y}+{x<>y}.
 | 
						|
Proof.
 | 
						|
intros n (p,Hp).
 | 
						|
induction p; intros ([|q],Hq).
 | 
						|
left.
 | 
						|
  apply dep_pair_intro.
 | 
						|
  reflexivity.
 | 
						|
right.
 | 
						|
  intro H; discriminate H.
 | 
						|
right.
 | 
						|
  intro H; discriminate H.
 | 
						|
assert (Hp' : p <= n).
 | 
						|
  apply le_Sn_le; assumption.
 | 
						|
assert (Hq' : q <= n).
 | 
						|
  apply le_Sn_le; assumption.
 | 
						|
destruct (IHp Hp' (exist (fun m => m <= n) q Hq'))
 | 
						|
  as [Heq|Hneq].
 | 
						|
left.
 | 
						|
  injection Heq; intro Heq'.
 | 
						|
  apply dep_pair_intro.
 | 
						|
  apply eq_S.
 | 
						|
  assumption.
 | 
						|
right.
 | 
						|
  intro HeqS.
 | 
						|
  injection HeqS; intro Heq.
 | 
						|
  apply Hneq.
 | 
						|
  apply dep_pair_intro.
 | 
						|
  assumption.
 | 
						|
Qed.
 | 
						|
 | 
						|
(** Showing that the cardinality relation is functional on decidable sets *)
 | 
						|
 | 
						|
Lemma card_inj_aux :
 | 
						|
  forall (A:Type) f g n,
 | 
						|
    (forall x:A, f x <= 0) ->
 | 
						|
    (forall x y:A, f x = f y -> x = y) ->
 | 
						|
    (forall m, m <= S n -> exists x:A, g x = m)
 | 
						|
     -> False.
 | 
						|
Proof.
 | 
						|
intros A f g n Hfbound Hfinj Hgsurj.
 | 
						|
destruct (Hgsurj (S n) (le_n _)) as (x,Hx).
 | 
						|
destruct (Hgsurj n (le_S _ _ (le_n _))) as (x',Hx').
 | 
						|
assert (Hfx : 0 = f x).
 | 
						|
apply le_n_O_eq.
 | 
						|
apply Hfbound.
 | 
						|
assert (Hfx' : 0 = f x').
 | 
						|
apply le_n_O_eq.
 | 
						|
apply Hfbound.
 | 
						|
assert (x=x').
 | 
						|
apply Hfinj.
 | 
						|
rewrite <- Hfx.
 | 
						|
rewrite <- Hfx'.
 | 
						|
reflexivity.
 | 
						|
rewrite H in Hx.
 | 
						|
rewrite Hx' in Hx.
 | 
						|
apply (n_Sn _ Hx).
 | 
						|
Qed.
 | 
						|
 | 
						|
(** For [dec_restrict], we use a lemma on the negation of equality
 | 
						|
that requires proof-irrelevance. It should be possible to avoid this
 | 
						|
lemma by generalizing over a first-order definition of [x<>y], say
 | 
						|
[neq] such that [{x=y}+{neq x y}] and [~(x=y /\ neq x y)]; for such
 | 
						|
[neq], unicity of proofs could be proven *)
 | 
						|
 | 
						|
  Require Import Classical.
 | 
						|
  Lemma neq_dep_intro :
 | 
						|
   forall (A:Set) (z x y:A) (p:x<>z) (q:y<>z), x=y ->
 | 
						|
      exist (fun x => x <> z) x p = exist (fun x => x <> z) y q.
 | 
						|
  Proof.
 | 
						|
  intros A z x y p q Heq.
 | 
						|
   generalize q; clear q; rewrite <- Heq; intro q.
 | 
						|
   rewrite (proof_irrelevance _ p q); reflexivity.
 | 
						|
  Qed.
 | 
						|
 | 
						|
Lemma dec_restrict :
 | 
						|
  forall (A:Set),
 | 
						|
    (forall x y :A, {x=y}+{x<>y}) ->
 | 
						|
     forall z (x y :{a:A|a<>z}), {x=y}+{x<>y}.
 | 
						|
Proof.
 | 
						|
intros A Hdec z (x,Hx) (y,Hy).
 | 
						|
destruct (Hdec x y) as [Heq|Hneq].
 | 
						|
left; apply neq_dep_intro; assumption.
 | 
						|
right; intro Heq; injection Heq; exact Hneq.
 | 
						|
Qed.
 | 
						|
 | 
						|
Lemma pred_inj : forall n m,
 | 
						|
  0 <> n -> 0 <> m -> pred m = pred n -> m = n.
 | 
						|
Proof.
 | 
						|
destruct n.
 | 
						|
intros m H; destruct H; reflexivity.
 | 
						|
destruct m.
 | 
						|
intros _ H; destruct H; reflexivity.
 | 
						|
simpl; intros _ _ H.
 | 
						|
rewrite H.
 | 
						|
reflexivity.
 | 
						|
Qed.
 | 
						|
 | 
						|
Lemma le_neq_lt : forall n m, n <= m -> n<>m -> n < m.
 | 
						|
Proof.
 | 
						|
intros n m Hle Hneq.
 | 
						|
destruct (le_lt_eq_dec n m Hle).
 | 
						|
assumption.
 | 
						|
contradiction.
 | 
						|
Qed.
 | 
						|
 | 
						|
Lemma inj_restrict :
 | 
						|
  forall (A:Set) (f:A->nat) x y z,
 | 
						|
    (forall x y : A, f x = f y -> x = y)
 | 
						|
    -> x <> z -> f y < f z -> f z <= f x
 | 
						|
    -> pred (f x) = f y
 | 
						|
    -> False.
 | 
						|
 | 
						|
(* Search error sans le type de f !! *)
 | 
						|
Proof.
 | 
						|
intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
 | 
						|
assert (f z <> f x).
 | 
						|
  apply sym_not_eq.
 | 
						|
  intro Heqf.
 | 
						|
  apply Hneqx.
 | 
						|
  apply Hfinj.
 | 
						|
  assumption.
 | 
						|
assert (f x = S (f y)).
 | 
						|
  assert (0 < f x).
 | 
						|
    apply le_lt_trans with (f z).
 | 
						|
    apply le_O_n.
 | 
						|
    apply le_neq_lt; assumption.
 | 
						|
  apply pred_inj.
 | 
						|
  apply O_S.
 | 
						|
  apply lt_O_neq; assumption.
 | 
						|
  exact Heq.
 | 
						|
assert (f z <= f y).
 | 
						|
destruct (le_lt_or_eq _ _ Hfx).
 | 
						|
  apply lt_n_Sm_le.
 | 
						|
  rewrite <- H0.
 | 
						|
  assumption.
 | 
						|
  contradiction Hneqx.
 | 
						|
  symmetry.
 | 
						|
  apply Hfinj.
 | 
						|
  assumption.
 | 
						|
contradiction (lt_not_le (f y) (f z)).
 | 
						|
Qed.
 | 
						|
 | 
						|
Theorem card_inj : forall m n (A:Set),
 | 
						|
  (forall x y :A, {x=y}+{x<>y}) ->
 | 
						|
  card A m -> card A n -> m = n.
 | 
						|
Proof.
 | 
						|
induction m; destruct n;
 | 
						|
intros A Hdec
 | 
						|
 (f,(Hfbound,(Hfinj,Hfsurj)))
 | 
						|
 (g,(Hgbound,(Hginj,Hgsurj))).
 | 
						|
(* 0/0 *)
 | 
						|
reflexivity.
 | 
						|
(* 0/Sm *)
 | 
						|
destruct (card_inj_aux _ _ _ _ Hfbound Hfinj Hgsurj).
 | 
						|
(* Sn/0 *)
 | 
						|
destruct (card_inj_aux _ _ _ _ Hgbound Hginj Hfsurj).
 | 
						|
(* Sn/Sm *)
 | 
						|
destruct (Hgsurj (S n) (le_n _)) as (xSn,HSnx).
 | 
						|
rewrite IHm with (n:=n) (A := {x:A|x<>xSn}).
 | 
						|
reflexivity.
 | 
						|
(* decidability of eq on {x:A|x<>xSm} *)
 | 
						|
apply dec_restrict.
 | 
						|
assumption.
 | 
						|
(* cardinality of {x:A|x<>xSn} is m *)
 | 
						|
pose (f' := fun x' : {x:A|x<>xSn} =>
 | 
						|
    let (x,Hneq) := x' in
 | 
						|
    if le_lt_dec (f xSn) (f x)
 | 
						|
    then pred (f x)
 | 
						|
    else f x).
 | 
						|
exists f'.
 | 
						|
split.
 | 
						|
(* f' is bounded *)
 | 
						|
unfold f'.
 | 
						|
intros (x,_).
 | 
						|
destruct (le_lt_dec (f xSn) (f x)) as [Hle|Hge].
 | 
						|
change m with (pred (S m)).
 | 
						|
apply le_pred.
 | 
						|
apply Hfbound.
 | 
						|
apply le_S_n.
 | 
						|
apply le_trans with (f xSn).
 | 
						|
exact Hge.
 | 
						|
apply Hfbound.
 | 
						|
split.
 | 
						|
(* f' is injective *)
 | 
						|
unfold f'.
 | 
						|
intros (x,Hneqx) (y,Hneqy) Heqf'.
 | 
						|
destruct (le_lt_dec (f xSn) (f x)) as [Hlefx|Hgefx];
 | 
						|
destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
 | 
						|
(* f xSn <= f x et f xSn <= f y *)
 | 
						|
assert (Heq : x = y).
 | 
						|
  apply Hfinj.
 | 
						|
  assert (f xSn <> f y).
 | 
						|
    apply sym_not_eq.
 | 
						|
    intro Heqf.
 | 
						|
    apply Hneqy.
 | 
						|
    apply Hfinj.
 | 
						|
    assumption.
 | 
						|
  assert (0 < f y).
 | 
						|
    apply le_lt_trans with (f xSn).
 | 
						|
    apply le_O_n.
 | 
						|
    apply le_neq_lt; assumption.
 | 
						|
  assert (f xSn <> f x).
 | 
						|
    apply sym_not_eq.
 | 
						|
    intro Heqf.
 | 
						|
    apply Hneqx.
 | 
						|
    apply Hfinj.
 | 
						|
    assumption.
 | 
						|
  assert (0 < f x).
 | 
						|
    apply le_lt_trans with (f xSn).
 | 
						|
    apply le_O_n.
 | 
						|
    apply le_neq_lt; assumption.
 | 
						|
  apply pred_inj.
 | 
						|
  apply lt_O_neq; assumption.
 | 
						|
  apply lt_O_neq; assumption.
 | 
						|
  assumption.
 | 
						|
apply neq_dep_intro; assumption.
 | 
						|
(* f y < f xSn <= f x *)
 | 
						|
destruct (inj_restrict A f x y xSn); assumption.
 | 
						|
(* f x < f xSn <= f y *)
 | 
						|
symmetry in Heqf'.
 | 
						|
destruct (inj_restrict A f y x xSn); assumption.
 | 
						|
(* f x < f xSn et f y < f xSn *)
 | 
						|
assert (Heq : x=y).
 | 
						|
  apply Hfinj; assumption.
 | 
						|
apply neq_dep_intro; assumption.
 | 
						|
(* f' is surjective *)
 | 
						|
intros p Hlep.
 | 
						|
destruct (le_lt_dec (f xSn) p) as [Hle|Hlt].
 | 
						|
(* case f xSn <= p *)
 | 
						|
destruct (Hfsurj (S p) (le_n_S _ _ Hlep)) as (x,Hx).
 | 
						|
assert (Hneq : x <> xSn).
 | 
						|
  intro Heqx.
 | 
						|
  rewrite Heqx in Hx.
 | 
						|
  rewrite Hx in Hle.
 | 
						|
  apply le_Sn_n with p; assumption.
 | 
						|
exists (exist (fun a => a<>xSn) x Hneq).
 | 
						|
unfold f'.
 | 
						|
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
 | 
						|
rewrite Hx; reflexivity.
 | 
						|
rewrite Hx in Hlt'.
 | 
						|
contradiction (le_not_lt (f xSn) p).
 | 
						|
apply lt_trans with (S p).
 | 
						|
apply lt_n_Sn.
 | 
						|
assumption.
 | 
						|
(* case p < f xSn *)
 | 
						|
destruct (Hfsurj p (le_S _ _ Hlep)) as (x,Hx).
 | 
						|
assert (Hneq : x <> xSn).
 | 
						|
  intro Heqx.
 | 
						|
  rewrite Heqx in Hx.
 | 
						|
  rewrite Hx in Hlt.
 | 
						|
  apply (lt_irrefl p).
 | 
						|
  assumption.
 | 
						|
exists (exist (fun a => a<>xSn) x Hneq).
 | 
						|
unfold f'.
 | 
						|
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
 | 
						|
  rewrite Hx in Hle'.
 | 
						|
  contradiction (lt_irrefl p).
 | 
						|
  apply lt_le_trans with (f xSn); assumption.
 | 
						|
  assumption.
 | 
						|
(* cardinality of {x:A|x<>xSn} is n *)
 | 
						|
pose (g' := fun x' : {x:A|x<>xSn} =>
 | 
						|
   let (x,Hneq) := x' in
 | 
						|
   if Hdec x xSn then 0 else g x).
 | 
						|
exists g'.
 | 
						|
split.
 | 
						|
(* g is bounded *)
 | 
						|
unfold g'.
 | 
						|
intros (x,_).
 | 
						|
destruct (Hdec x xSn) as [_|Hneq].
 | 
						|
apply le_O_n.
 | 
						|
assert (Hle_gx:=Hgbound x).
 | 
						|
destruct (le_lt_or_eq _ _ Hle_gx).
 | 
						|
apply lt_n_Sm_le.
 | 
						|
assumption.
 | 
						|
contradiction Hneq.
 | 
						|
apply Hginj.
 | 
						|
rewrite HSnx.
 | 
						|
assumption.
 | 
						|
split.
 | 
						|
(* g is injective *)
 | 
						|
unfold g'.
 | 
						|
intros (x,Hneqx) (y,Hneqy) Heqg'.
 | 
						|
destruct (Hdec x xSn) as [Heqx|_].
 | 
						|
contradiction Hneqx.
 | 
						|
destruct (Hdec y xSn) as [Heqy|_].
 | 
						|
contradiction Hneqy.
 | 
						|
assert (Heq : x=y).
 | 
						|
  apply Hginj; assumption.
 | 
						|
apply neq_dep_intro; assumption.
 | 
						|
(* g is surjective *)
 | 
						|
intros p Hlep.
 | 
						|
destruct (Hgsurj p (le_S _ _ Hlep)) as (x,Hx).
 | 
						|
assert (Hneq : x<>xSn).
 | 
						|
  intro Heq.
 | 
						|
  rewrite Heq in Hx.
 | 
						|
  rewrite Hx in HSnx.
 | 
						|
  rewrite HSnx in Hlep.
 | 
						|
  contradiction (le_Sn_n _ Hlep).
 | 
						|
exists (exist (fun a => a<>xSn) x Hneq).
 | 
						|
simpl.
 | 
						|
destruct (Hdec x xSn) as [Heqx|_].
 | 
						|
contradiction Hneq.
 | 
						|
assumption.
 | 
						|
Qed.
 | 
						|
 | 
						|
(** Conclusion *)
 | 
						|
 | 
						|
Theorem interval_discr :
 | 
						|
  forall n m, {p:nat|p<=n} = {p:nat|p<=m} -> n=m.
 | 
						|
Proof.
 | 
						|
intros n m Heq.
 | 
						|
apply card_inj with (A := {p:nat|p<=n}).
 | 
						|
apply interval_dec.
 | 
						|
apply card_interval.
 | 
						|
rewrite Heq.
 | 
						|
apply card_interval.
 | 
						|
Qed.
 |