mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2325 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			2325 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| // Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
 | ||
| // file at the top-level directory of this distribution and at
 | ||
| // http://rust-lang.org/COPYRIGHT.
 | ||
| //
 | ||
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
 | ||
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
 | ||
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
 | ||
| // option. This file may not be copied, modified, or distributed
 | ||
| // except according to those terms.
 | ||
| 
 | ||
| use self::Entry::*;
 | ||
| use self::SearchResult::*;
 | ||
| use self::VacantEntryState::*;
 | ||
| 
 | ||
| use borrow::Borrow;
 | ||
| use clone::Clone;
 | ||
| use cmp::{max, Eq, PartialEq};
 | ||
| use default::Default;
 | ||
| use fmt::{self, Debug};
 | ||
| use hash::{Hash, SipHasher};
 | ||
| use iter::{self, Iterator, ExactSizeIterator, IntoIterator, FromIterator, Extend, Map};
 | ||
| use marker::Sized;
 | ||
| use mem::{self, replace};
 | ||
| use ops::{Deref, FnMut, FnOnce, Index};
 | ||
| use option::Option::{self, Some, None};
 | ||
| use rand::{self, Rng};
 | ||
| use result::Result::{self, Ok, Err};
 | ||
| 
 | ||
| use super::table::{
 | ||
|     self,
 | ||
|     Bucket,
 | ||
|     EmptyBucket,
 | ||
|     FullBucket,
 | ||
|     FullBucketImm,
 | ||
|     FullBucketMut,
 | ||
|     RawTable,
 | ||
|     SafeHash
 | ||
| };
 | ||
| use super::table::BucketState::{
 | ||
|     Empty,
 | ||
|     Full,
 | ||
| };
 | ||
| use super::state::HashState;
 | ||
| 
 | ||
| const INITIAL_LOG2_CAP: usize = 5;
 | ||
| #[unstable(feature = "std_misc")]
 | ||
| pub const INITIAL_CAPACITY: usize = 1 << INITIAL_LOG2_CAP; // 2^5
 | ||
| 
 | ||
| /// The default behavior of HashMap implements a load factor of 90.9%.
 | ||
| /// This behavior is characterized by the following condition:
 | ||
| ///
 | ||
| /// - if size > 0.909 * capacity: grow the map
 | ||
| #[derive(Clone)]
 | ||
| struct DefaultResizePolicy;
 | ||
| 
 | ||
| impl DefaultResizePolicy {
 | ||
|     fn new() -> DefaultResizePolicy {
 | ||
|         DefaultResizePolicy
 | ||
|     }
 | ||
| 
 | ||
|     #[inline]
 | ||
|     fn min_capacity(&self, usable_size: usize) -> usize {
 | ||
|         // Here, we are rephrasing the logic by specifying the lower limit
 | ||
|         // on capacity:
 | ||
|         //
 | ||
|         // - if `cap < size * 1.1`: grow the map
 | ||
|         usable_size * 11 / 10
 | ||
|     }
 | ||
| 
 | ||
|     /// An inverse of `min_capacity`, approximately.
 | ||
|     #[inline]
 | ||
|     fn usable_capacity(&self, cap: usize) -> usize {
 | ||
|         // As the number of entries approaches usable capacity,
 | ||
|         // min_capacity(size) must be smaller than the internal capacity,
 | ||
|         // so that the map is not resized:
 | ||
|         // `min_capacity(usable_capacity(x)) <= x`.
 | ||
|         // The left-hand side can only be smaller due to flooring by integer
 | ||
|         // division.
 | ||
|         //
 | ||
|         // This doesn't have to be checked for overflow since allocation size
 | ||
|         // in bytes will overflow earlier than multiplication by 10.
 | ||
|         cap * 10 / 11
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[test]
 | ||
| fn test_resize_policy() {
 | ||
|     let rp = DefaultResizePolicy;
 | ||
|     for n in 0..1000 {
 | ||
|         assert!(rp.min_capacity(rp.usable_capacity(n)) <= n);
 | ||
|         assert!(rp.usable_capacity(rp.min_capacity(n)) <= n);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // The main performance trick in this hashmap is called Robin Hood Hashing.
 | ||
| // It gains its excellent performance from one essential operation:
 | ||
| //
 | ||
| //    If an insertion collides with an existing element, and that element's
 | ||
| //    "probe distance" (how far away the element is from its ideal location)
 | ||
| //    is higher than how far we've already probed, swap the elements.
 | ||
| //
 | ||
| // This massively lowers variance in probe distance, and allows us to get very
 | ||
| // high load factors with good performance. The 90% load factor I use is rather
 | ||
| // conservative.
 | ||
| //
 | ||
| // > Why a load factor of approximately 90%?
 | ||
| //
 | ||
| // In general, all the distances to initial buckets will converge on the mean.
 | ||
| // At a load factor of α, the odds of finding the target bucket after k
 | ||
| // probes is approximately 1-α^k. If we set this equal to 50% (since we converge
 | ||
| // on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round
 | ||
| // this down to make the math easier on the CPU and avoid its FPU.
 | ||
| // Since on average we start the probing in the middle of a cache line, this
 | ||
| // strategy pulls in two cache lines of hashes on every lookup. I think that's
 | ||
| // pretty good, but if you want to trade off some space, it could go down to one
 | ||
| // cache line on average with an α of 0.84.
 | ||
| //
 | ||
| // > Wait, what? Where did you get 1-α^k from?
 | ||
| //
 | ||
| // On the first probe, your odds of a collision with an existing element is α.
 | ||
| // The odds of doing this twice in a row is approximately α^2. For three times,
 | ||
| // α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT
 | ||
| // colliding after k tries is 1-α^k.
 | ||
| //
 | ||
| // The paper from 1986 cited below mentions an implementation which keeps track
 | ||
| // of the distance-to-initial-bucket histogram. This approach is not suitable
 | ||
| // for modern architectures because it requires maintaining an internal data
 | ||
| // structure. This allows very good first guesses, but we are most concerned
 | ||
| // with guessing entire cache lines, not individual indexes. Furthermore, array
 | ||
| // accesses are no longer linear and in one direction, as we have now. There
 | ||
| // is also memory and cache pressure that this would entail that would be very
 | ||
| // difficult to properly see in a microbenchmark.
 | ||
| //
 | ||
| // ## Future Improvements (FIXME!)
 | ||
| //
 | ||
| // Allow the load factor to be changed dynamically and/or at initialization.
 | ||
| //
 | ||
| // Also, would it be possible for us to reuse storage when growing the
 | ||
| // underlying table? This is exactly the use case for 'realloc', and may
 | ||
| // be worth exploring.
 | ||
| //
 | ||
| // ## Future Optimizations (FIXME!)
 | ||
| //
 | ||
| // Another possible design choice that I made without any real reason is
 | ||
| // parameterizing the raw table over keys and values. Technically, all we need
 | ||
| // is the size and alignment of keys and values, and the code should be just as
 | ||
| // efficient (well, we might need one for power-of-two size and one for not...).
 | ||
| // This has the potential to reduce code bloat in rust executables, without
 | ||
| // really losing anything except 4 words (key size, key alignment, val size,
 | ||
| // val alignment) which can be passed in to every call of a `RawTable` function.
 | ||
| // This would definitely be an avenue worth exploring if people start complaining
 | ||
| // about the size of rust executables.
 | ||
| //
 | ||
| // Annotate exceedingly likely branches in `table::make_hash`
 | ||
| // and `search_hashed` to reduce instruction cache pressure
 | ||
| // and mispredictions once it becomes possible (blocked on issue #11092).
 | ||
| //
 | ||
| // Shrinking the table could simply reallocate in place after moving buckets
 | ||
| // to the first half.
 | ||
| //
 | ||
| // The growth algorithm (fragment of the Proof of Correctness)
 | ||
| // --------------------
 | ||
| //
 | ||
| // The growth algorithm is basically a fast path of the naive reinsertion-
 | ||
| // during-resize algorithm. Other paths should never be taken.
 | ||
| //
 | ||
| // Consider growing a robin hood hashtable of capacity n. Normally, we do this
 | ||
| // by allocating a new table of capacity `2n`, and then individually reinsert
 | ||
| // each element in the old table into the new one. This guarantees that the
 | ||
| // new table is a valid robin hood hashtable with all the desired statistical
 | ||
| // properties. Remark that the order we reinsert the elements in should not
 | ||
| // matter. For simplicity and efficiency, we will consider only linear
 | ||
| // reinsertions, which consist of reinserting all elements in the old table
 | ||
| // into the new one by increasing order of index. However we will not be
 | ||
| // starting our reinsertions from index 0 in general. If we start from index
 | ||
| // i, for the purpose of reinsertion we will consider all elements with real
 | ||
| // index j < i to have virtual index n + j.
 | ||
| //
 | ||
| // Our hash generation scheme consists of generating a 64-bit hash and
 | ||
| // truncating the most significant bits. When moving to the new table, we
 | ||
| // simply introduce a new bit to the front of the hash. Therefore, if an
 | ||
| // elements has ideal index i in the old table, it can have one of two ideal
 | ||
| // locations in the new table. If the new bit is 0, then the new ideal index
 | ||
| // is i. If the new bit is 1, then the new ideal index is n + i. Intuitively,
 | ||
| // we are producing two independent tables of size n, and for each element we
 | ||
| // independently choose which table to insert it into with equal probability.
 | ||
| // However the rather than wrapping around themselves on overflowing their
 | ||
| // indexes, the first table overflows into the first, and the first into the
 | ||
| // second. Visually, our new table will look something like:
 | ||
| //
 | ||
| // [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy]
 | ||
| //
 | ||
| // Where x's are elements inserted into the first table, y's are elements
 | ||
| // inserted into the second, and _'s are empty sections. We now define a few
 | ||
| // key concepts that we will use later. Note that this is a very abstract
 | ||
| // perspective of the table. A real resized table would be at least half
 | ||
| // empty.
 | ||
| //
 | ||
| // Theorem: A linear robin hood reinsertion from the first ideal element
 | ||
| // produces identical results to a linear naive reinsertion from the same
 | ||
| // element.
 | ||
| //
 | ||
| // FIXME(Gankro, pczarn): review the proof and put it all in a separate README.md
 | ||
| 
 | ||
| /// A hash map implementation which uses linear probing with Robin
 | ||
| /// Hood bucket stealing.
 | ||
| ///
 | ||
| /// The hashes are all keyed by the thread-local random number generator
 | ||
| /// on creation by default. This means that the ordering of the keys is
 | ||
| /// randomized, but makes the tables more resistant to
 | ||
| /// denial-of-service attacks (Hash DoS). This behaviour can be
 | ||
| /// overridden with one of the constructors.
 | ||
| ///
 | ||
| /// It is required that the keys implement the `Eq` and `Hash` traits, although
 | ||
| /// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`.
 | ||
| /// If you implement these yourself, it is important that the following
 | ||
| /// property holds:
 | ||
| ///
 | ||
| /// ```text
 | ||
| /// k1 == k2 -> hash(k1) == hash(k2)
 | ||
| /// ```
 | ||
| ///
 | ||
| /// In other words, if two keys are equal, their hashes must be equal.
 | ||
| ///
 | ||
| /// It is a logic error for a key to be modified in such a way that the key's
 | ||
| /// hash, as determined by the `Hash` trait, or its equality, as determined by
 | ||
| /// the `Eq` trait, changes while it is in the map. This is normally only
 | ||
| /// possible through `Cell`, `RefCell`, global state, I/O, or unsafe code.
 | ||
| ///
 | ||
| /// Relevant papers/articles:
 | ||
| ///
 | ||
| /// 1. Pedro Celis. ["Robin Hood Hashing"](https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf)
 | ||
| /// 2. Emmanuel Goossaert. ["Robin Hood
 | ||
| ///    hashing"](http://codecapsule.com/2013/11/11/robin-hood-hashing/)
 | ||
| /// 3. Emmanuel Goossaert. ["Robin Hood hashing: backward shift
 | ||
| ///    deletion"](http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/)
 | ||
| ///
 | ||
| /// # Examples
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use std::collections::HashMap;
 | ||
| ///
 | ||
| /// // type inference lets us omit an explicit type signature (which
 | ||
| /// // would be `HashMap<&str, &str>` in this example).
 | ||
| /// let mut book_reviews = HashMap::new();
 | ||
| ///
 | ||
| /// // review some books.
 | ||
| /// book_reviews.insert("Adventures of Huckleberry Finn",    "My favorite book.");
 | ||
| /// book_reviews.insert("Grimms' Fairy Tales",               "Masterpiece.");
 | ||
| /// book_reviews.insert("Pride and Prejudice",               "Very enjoyable.");
 | ||
| /// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.");
 | ||
| ///
 | ||
| /// // check for a specific one.
 | ||
| /// if !book_reviews.contains_key("Les Misérables") {
 | ||
| ///     println!("We've got {} reviews, but Les Misérables ain't one.",
 | ||
| ///              book_reviews.len());
 | ||
| /// }
 | ||
| ///
 | ||
| /// // oops, this review has a lot of spelling mistakes, let's delete it.
 | ||
| /// book_reviews.remove("The Adventures of Sherlock Holmes");
 | ||
| ///
 | ||
| /// // look up the values associated with some keys.
 | ||
| /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
 | ||
| /// for book in &to_find {
 | ||
| ///     match book_reviews.get(book) {
 | ||
| ///         Some(review) => println!("{}: {}", book, review),
 | ||
| ///         None => println!("{} is unreviewed.", book)
 | ||
| ///     }
 | ||
| /// }
 | ||
| ///
 | ||
| /// // iterate over everything.
 | ||
| /// for (book, review) in &book_reviews {
 | ||
| ///     println!("{}: \"{}\"", book, review);
 | ||
| /// }
 | ||
| /// ```
 | ||
| ///
 | ||
| /// The easiest way to use `HashMap` with a custom type as key is to derive `Eq` and `Hash`.
 | ||
| /// We must also derive `PartialEq`.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use std::collections::HashMap;
 | ||
| ///
 | ||
| /// #[derive(Hash, Eq, PartialEq, Debug)]
 | ||
| /// struct Viking {
 | ||
| ///     name: String,
 | ||
| ///     country: String,
 | ||
| /// }
 | ||
| ///
 | ||
| /// impl Viking {
 | ||
| ///     /// Create a new Viking.
 | ||
| ///     fn new(name: &str, country: &str) -> Viking {
 | ||
| ///         Viking { name: name.to_string(), country: country.to_string() }
 | ||
| ///     }
 | ||
| /// }
 | ||
| ///
 | ||
| /// // Use a HashMap to store the vikings' health points.
 | ||
| /// let mut vikings = HashMap::new();
 | ||
| ///
 | ||
| /// vikings.insert(Viking::new("Einar", "Norway"), 25);
 | ||
| /// vikings.insert(Viking::new("Olaf", "Denmark"), 24);
 | ||
| /// vikings.insert(Viking::new("Harald", "Iceland"), 12);
 | ||
| ///
 | ||
| /// // Use derived implementation to print the status of the vikings.
 | ||
| /// for (viking, health) in &vikings {
 | ||
| ///     println!("{:?} has {} hp", viking, health);
 | ||
| /// }
 | ||
| /// ```
 | ||
| #[derive(Clone)]
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub struct HashMap<K, V, S = RandomState> {
 | ||
|     // All hashes are keyed on these values, to prevent hash collision attacks.
 | ||
|     hash_state: S,
 | ||
| 
 | ||
|     table: RawTable<K, V>,
 | ||
| 
 | ||
|     resize_policy: DefaultResizePolicy,
 | ||
| }
 | ||
| 
 | ||
| /// Search for a pre-hashed key.
 | ||
| fn search_hashed<K, V, M, F>(table: M,
 | ||
|                              hash: SafeHash,
 | ||
|                              mut is_match: F)
 | ||
|                              -> SearchResult<K, V, M> where
 | ||
|     M: Deref<Target=RawTable<K, V>>,
 | ||
|     F: FnMut(&K) -> bool,
 | ||
| {
 | ||
|     // This is the only function where capacity can be zero. To avoid
 | ||
|     // undefined behaviour when Bucket::new gets the raw bucket in this
 | ||
|     // case, immediately return the appropriate search result.
 | ||
|     if table.capacity() == 0 {
 | ||
|         return TableRef(table);
 | ||
|     }
 | ||
| 
 | ||
|     let size = table.size();
 | ||
|     let mut probe = Bucket::new(table, hash);
 | ||
|     let ib = probe.index();
 | ||
| 
 | ||
|     while probe.index() != ib + size {
 | ||
|         let full = match probe.peek() {
 | ||
|             Empty(b) => return TableRef(b.into_table()), // hit an empty bucket
 | ||
|             Full(b) => b
 | ||
|         };
 | ||
| 
 | ||
|         if full.distance() + ib < full.index() {
 | ||
|             // We can finish the search early if we hit any bucket
 | ||
|             // with a lower distance to initial bucket than we've probed.
 | ||
|             return TableRef(full.into_table());
 | ||
|         }
 | ||
| 
 | ||
|         // If the hash doesn't match, it can't be this one..
 | ||
|         if hash == full.hash() {
 | ||
|             // If the key doesn't match, it can't be this one..
 | ||
|             if is_match(full.read().0) {
 | ||
|                 return FoundExisting(full);
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         probe = full.next();
 | ||
|     }
 | ||
| 
 | ||
|     TableRef(probe.into_table())
 | ||
| }
 | ||
| 
 | ||
| fn pop_internal<K, V>(starting_bucket: FullBucketMut<K, V>) -> (K, V) {
 | ||
|     let (empty, retkey, retval) = starting_bucket.take();
 | ||
|     let mut gap = match empty.gap_peek() {
 | ||
|         Some(b) => b,
 | ||
|         None => return (retkey, retval)
 | ||
|     };
 | ||
| 
 | ||
|     while gap.full().distance() != 0 {
 | ||
|         gap = match gap.shift() {
 | ||
|             Some(b) => b,
 | ||
|             None => break
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     // Now we've done all our shifting. Return the value we grabbed earlier.
 | ||
|     (retkey, retval)
 | ||
| }
 | ||
| 
 | ||
| /// Perform robin hood bucket stealing at the given `bucket`. You must
 | ||
| /// also pass the position of that bucket's initial bucket so we don't have
 | ||
| /// to recalculate it.
 | ||
| ///
 | ||
| /// `hash`, `k`, and `v` are the elements to "robin hood" into the hashtable.
 | ||
| fn robin_hood<'a, K: 'a, V: 'a>(mut bucket: FullBucketMut<'a, K, V>,
 | ||
|                         mut ib: usize,
 | ||
|                         mut hash: SafeHash,
 | ||
|                         mut k: K,
 | ||
|                         mut v: V)
 | ||
|                         -> &'a mut V {
 | ||
|     let starting_index = bucket.index();
 | ||
|     let size = {
 | ||
|         let table = bucket.table(); // FIXME "lifetime too short".
 | ||
|         table.size()
 | ||
|     };
 | ||
|     // There can be at most `size - dib` buckets to displace, because
 | ||
|     // in the worst case, there are `size` elements and we already are
 | ||
|     // `distance` buckets away from the initial one.
 | ||
|     let idx_end = starting_index + size - bucket.distance();
 | ||
| 
 | ||
|     loop {
 | ||
|         let (old_hash, old_key, old_val) = bucket.replace(hash, k, v);
 | ||
|         loop {
 | ||
|             let probe = bucket.next();
 | ||
|             assert!(probe.index() != idx_end);
 | ||
| 
 | ||
|             let full_bucket = match probe.peek() {
 | ||
|                 Empty(bucket) => {
 | ||
|                     // Found a hole!
 | ||
|                     let b = bucket.put(old_hash, old_key, old_val);
 | ||
|                     // Now that it's stolen, just read the value's pointer
 | ||
|                     // right out of the table!
 | ||
|                     return Bucket::at_index(b.into_table(), starting_index)
 | ||
|                                .peek()
 | ||
|                                .expect_full()
 | ||
|                                .into_mut_refs()
 | ||
|                                .1;
 | ||
|                 },
 | ||
|                 Full(bucket) => bucket
 | ||
|             };
 | ||
| 
 | ||
|             let probe_ib = full_bucket.index() - full_bucket.distance();
 | ||
| 
 | ||
|             bucket = full_bucket;
 | ||
| 
 | ||
|             // Robin hood! Steal the spot.
 | ||
|             if ib < probe_ib {
 | ||
|                 ib = probe_ib;
 | ||
|                 hash = old_hash;
 | ||
|                 k = old_key;
 | ||
|                 v = old_val;
 | ||
|                 break;
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// A result that works like Option<FullBucket<..>> but preserves
 | ||
| /// the reference that grants us access to the table in any case.
 | ||
| enum SearchResult<K, V, M> {
 | ||
|     // This is an entry that holds the given key:
 | ||
|     FoundExisting(FullBucket<K, V, M>),
 | ||
| 
 | ||
|     // There was no such entry. The reference is given back:
 | ||
|     TableRef(M)
 | ||
| }
 | ||
| 
 | ||
| impl<K, V, M> SearchResult<K, V, M> {
 | ||
|     fn into_option(self) -> Option<FullBucket<K, V, M>> {
 | ||
|         match self {
 | ||
|             FoundExisting(bucket) => Some(bucket),
 | ||
|             TableRef(_) => None
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<K, V, S> HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, S: HashState
 | ||
| {
 | ||
|     fn make_hash<X: ?Sized>(&self, x: &X) -> SafeHash where X: Hash {
 | ||
|         table::make_hash(&self.hash_state, x)
 | ||
|     }
 | ||
| 
 | ||
|     /// Search for a key, yielding the index if it's found in the hashtable.
 | ||
|     /// If you already have the hash for the key lying around, use
 | ||
|     /// search_hashed.
 | ||
|     fn search<'a, Q: ?Sized>(&'a self, q: &Q) -> Option<FullBucketImm<'a, K, V>>
 | ||
|         where K: Borrow<Q>, Q: Eq + Hash
 | ||
|     {
 | ||
|         let hash = self.make_hash(q);
 | ||
|         search_hashed(&self.table, hash, |k| q.eq(k.borrow()))
 | ||
|             .into_option()
 | ||
|     }
 | ||
| 
 | ||
|     fn search_mut<'a, Q: ?Sized>(&'a mut self, q: &Q) -> Option<FullBucketMut<'a, K, V>>
 | ||
|         where K: Borrow<Q>, Q: Eq + Hash
 | ||
|     {
 | ||
|         let hash = self.make_hash(q);
 | ||
|         search_hashed(&mut self.table, hash, |k| q.eq(k.borrow()))
 | ||
|             .into_option()
 | ||
|     }
 | ||
| 
 | ||
|     // The caller should ensure that invariants by Robin Hood Hashing hold.
 | ||
|     fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) {
 | ||
|         let cap = self.table.capacity();
 | ||
|         let mut buckets = Bucket::new(&mut self.table, hash);
 | ||
|         let ib = buckets.index();
 | ||
| 
 | ||
|         while buckets.index() != ib + cap {
 | ||
|             // We don't need to compare hashes for value swap.
 | ||
|             // Not even DIBs for Robin Hood.
 | ||
|             buckets = match buckets.peek() {
 | ||
|                 Empty(empty) => {
 | ||
|                     empty.put(hash, k, v);
 | ||
|                     return;
 | ||
|                 }
 | ||
|                 Full(b) => b.into_bucket()
 | ||
|             };
 | ||
|             buckets.next();
 | ||
|         }
 | ||
|         panic!("Internal HashMap error: Out of space.");
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<K: Hash + Eq, V> HashMap<K, V, RandomState> {
 | ||
|     /// Creates an empty HashMap.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     /// let mut map: HashMap<&str, isize> = HashMap::new();
 | ||
|     /// ```
 | ||
|     #[inline]
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn new() -> HashMap<K, V, RandomState> {
 | ||
|         Default::default()
 | ||
|     }
 | ||
| 
 | ||
|     /// Creates an empty hash map with the given initial capacity.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     /// let mut map: HashMap<&str, isize> = HashMap::with_capacity(10);
 | ||
|     /// ```
 | ||
|     #[inline]
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState> {
 | ||
|         HashMap::with_capacity_and_hash_state(capacity, Default::default())
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<K, V, S> HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, S: HashState
 | ||
| {
 | ||
|     /// Creates an empty hashmap which will use the given hasher to hash keys.
 | ||
|     ///
 | ||
|     /// The created map has the default initial capacity.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// # #![feature(std_misc)]
 | ||
|     /// use std::collections::HashMap;
 | ||
|     /// use std::collections::hash_map::RandomState;
 | ||
|     ///
 | ||
|     /// let s = RandomState::new();
 | ||
|     /// let mut map = HashMap::with_hash_state(s);
 | ||
|     /// map.insert(1, 2);
 | ||
|     /// ```
 | ||
|     #[inline]
 | ||
|     #[unstable(feature = "std_misc", reason = "hasher stuff is unclear")]
 | ||
|     pub fn with_hash_state(hash_state: S) -> HashMap<K, V, S> {
 | ||
|         HashMap {
 | ||
|             hash_state:    hash_state,
 | ||
|             resize_policy: DefaultResizePolicy::new(),
 | ||
|             table:         RawTable::new(0),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Creates an empty HashMap with space for at least `capacity`
 | ||
|     /// elements, using `hasher` to hash the keys.
 | ||
|     ///
 | ||
|     /// Warning: `hasher` is normally randomly generated, and
 | ||
|     /// is designed to allow HashMaps to be resistant to attacks that
 | ||
|     /// cause many collisions and very poor performance. Setting it
 | ||
|     /// manually using this function can expose a DoS attack vector.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// # #![feature(std_misc)]
 | ||
|     /// use std::collections::HashMap;
 | ||
|     /// use std::collections::hash_map::RandomState;
 | ||
|     ///
 | ||
|     /// let s = RandomState::new();
 | ||
|     /// let mut map = HashMap::with_capacity_and_hash_state(10, s);
 | ||
|     /// map.insert(1, 2);
 | ||
|     /// ```
 | ||
|     #[inline]
 | ||
|     #[unstable(feature = "std_misc", reason = "hasher stuff is unclear")]
 | ||
|     pub fn with_capacity_and_hash_state(capacity: usize, hash_state: S)
 | ||
|                                         -> HashMap<K, V, S> {
 | ||
|         let resize_policy = DefaultResizePolicy::new();
 | ||
|         let min_cap = max(INITIAL_CAPACITY, resize_policy.min_capacity(capacity));
 | ||
|         let internal_cap = min_cap.checked_next_power_of_two().expect("capacity overflow");
 | ||
|         assert!(internal_cap >= capacity, "capacity overflow");
 | ||
|         HashMap {
 | ||
|             hash_state:    hash_state,
 | ||
|             resize_policy: resize_policy,
 | ||
|             table:         RawTable::new(internal_cap),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns the number of elements the map can hold without reallocating.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     /// let map: HashMap<isize, isize> = HashMap::with_capacity(100);
 | ||
|     /// assert!(map.capacity() >= 100);
 | ||
|     /// ```
 | ||
|     #[inline]
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn capacity(&self) -> usize {
 | ||
|         self.resize_policy.usable_capacity(self.table.capacity())
 | ||
|     }
 | ||
| 
 | ||
|     /// Reserves capacity for at least `additional` more elements to be inserted
 | ||
|     /// in the `HashMap`. The collection may reserve more space to avoid
 | ||
|     /// frequent reallocations.
 | ||
|     ///
 | ||
|     /// # Panics
 | ||
|     ///
 | ||
|     /// Panics if the new allocation size overflows `usize`.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     /// let mut map: HashMap<&str, isize> = HashMap::new();
 | ||
|     /// map.reserve(10);
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn reserve(&mut self, additional: usize) {
 | ||
|         let new_size = self.len().checked_add(additional).expect("capacity overflow");
 | ||
|         let min_cap = self.resize_policy.min_capacity(new_size);
 | ||
| 
 | ||
|         // An invalid value shouldn't make us run out of space. This includes
 | ||
|         // an overflow check.
 | ||
|         assert!(new_size <= min_cap);
 | ||
| 
 | ||
|         if self.table.capacity() < min_cap {
 | ||
|             let new_capacity = max(min_cap.next_power_of_two(), INITIAL_CAPACITY);
 | ||
|             self.resize(new_capacity);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Resizes the internal vectors to a new capacity. It's your responsibility to:
 | ||
|     ///   1) Make sure the new capacity is enough for all the elements, accounting
 | ||
|     ///      for the load factor.
 | ||
|     ///   2) Ensure new_capacity is a power of two or zero.
 | ||
|     fn resize(&mut self, new_capacity: usize) {
 | ||
|         assert!(self.table.size() <= new_capacity);
 | ||
|         assert!(new_capacity.is_power_of_two() || new_capacity == 0);
 | ||
| 
 | ||
|         let mut old_table = replace(&mut self.table, RawTable::new(new_capacity));
 | ||
|         let old_size = old_table.size();
 | ||
| 
 | ||
|         if old_table.capacity() == 0 || old_table.size() == 0 {
 | ||
|             return;
 | ||
|         }
 | ||
| 
 | ||
|         // Grow the table.
 | ||
|         // Specialization of the other branch.
 | ||
|         let mut bucket = Bucket::first(&mut old_table);
 | ||
| 
 | ||
|         // "So a few of the first shall be last: for many be called,
 | ||
|         // but few chosen."
 | ||
|         //
 | ||
|         // We'll most likely encounter a few buckets at the beginning that
 | ||
|         // have their initial buckets near the end of the table. They were
 | ||
|         // placed at the beginning as the probe wrapped around the table
 | ||
|         // during insertion. We must skip forward to a bucket that won't
 | ||
|         // get reinserted too early and won't unfairly steal others spot.
 | ||
|         // This eliminates the need for robin hood.
 | ||
|         loop {
 | ||
|             bucket = match bucket.peek() {
 | ||
|                 Full(full) => {
 | ||
|                     if full.distance() == 0 {
 | ||
|                         // This bucket occupies its ideal spot.
 | ||
|                         // It indicates the start of another "cluster".
 | ||
|                         bucket = full.into_bucket();
 | ||
|                         break;
 | ||
|                     }
 | ||
|                     // Leaving this bucket in the last cluster for later.
 | ||
|                     full.into_bucket()
 | ||
|                 }
 | ||
|                 Empty(b) => {
 | ||
|                     // Encountered a hole between clusters.
 | ||
|                     b.into_bucket()
 | ||
|                 }
 | ||
|             };
 | ||
|             bucket.next();
 | ||
|         }
 | ||
| 
 | ||
|         // This is how the buckets might be laid out in memory:
 | ||
|         // ($ marks an initialized bucket)
 | ||
|         //  ________________
 | ||
|         // |$$$_$$$$$$_$$$$$|
 | ||
|         //
 | ||
|         // But we've skipped the entire initial cluster of buckets
 | ||
|         // and will continue iteration in this order:
 | ||
|         //  ________________
 | ||
|         //     |$$$$$$_$$$$$
 | ||
|         //                  ^ wrap around once end is reached
 | ||
|         //  ________________
 | ||
|         //  $$$_____________|
 | ||
|         //    ^ exit once table.size == 0
 | ||
|         loop {
 | ||
|             bucket = match bucket.peek() {
 | ||
|                 Full(bucket) => {
 | ||
|                     let h = bucket.hash();
 | ||
|                     let (b, k, v) = bucket.take();
 | ||
|                     self.insert_hashed_ordered(h, k, v);
 | ||
|                     {
 | ||
|                         let t = b.table(); // FIXME "lifetime too short".
 | ||
|                         if t.size() == 0 { break }
 | ||
|                     };
 | ||
|                     b.into_bucket()
 | ||
|                 }
 | ||
|                 Empty(b) => b.into_bucket()
 | ||
|             };
 | ||
|             bucket.next();
 | ||
|         }
 | ||
| 
 | ||
|         assert_eq!(self.table.size(), old_size);
 | ||
|     }
 | ||
| 
 | ||
|     /// Shrinks the capacity of the map as much as possible. It will drop
 | ||
|     /// down as much as possible while maintaining the internal rules
 | ||
|     /// and possibly leaving some space in accordance with the resize policy.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map: HashMap<isize, isize> = HashMap::with_capacity(100);
 | ||
|     /// map.insert(1, 2);
 | ||
|     /// map.insert(3, 4);
 | ||
|     /// assert!(map.capacity() >= 100);
 | ||
|     /// map.shrink_to_fit();
 | ||
|     /// assert!(map.capacity() >= 2);
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn shrink_to_fit(&mut self) {
 | ||
|         let min_capacity = self.resize_policy.min_capacity(self.len());
 | ||
|         let min_capacity = max(min_capacity.next_power_of_two(), INITIAL_CAPACITY);
 | ||
| 
 | ||
|         // An invalid value shouldn't make us run out of space.
 | ||
|         debug_assert!(self.len() <= min_capacity);
 | ||
| 
 | ||
|         if self.table.capacity() != min_capacity {
 | ||
|             let old_table = replace(&mut self.table, RawTable::new(min_capacity));
 | ||
|             let old_size = old_table.size();
 | ||
| 
 | ||
|             // Shrink the table. Naive algorithm for resizing:
 | ||
|             for (h, k, v) in old_table.into_iter() {
 | ||
|                 self.insert_hashed_nocheck(h, k, v);
 | ||
|             }
 | ||
| 
 | ||
|             debug_assert_eq!(self.table.size(), old_size);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Insert a pre-hashed key-value pair, without first checking
 | ||
|     /// that there's enough room in the buckets. Returns a reference to the
 | ||
|     /// newly insert value.
 | ||
|     ///
 | ||
|     /// If the key already exists, the hashtable will be returned untouched
 | ||
|     /// and a reference to the existing element will be returned.
 | ||
|     fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> &mut V {
 | ||
|         self.insert_or_replace_with(hash, k, v, |_, _, _| ())
 | ||
|     }
 | ||
| 
 | ||
|     fn insert_or_replace_with<'a, F>(&'a mut self,
 | ||
|                                      hash: SafeHash,
 | ||
|                                      k: K,
 | ||
|                                      v: V,
 | ||
|                                      mut found_existing: F)
 | ||
|                                      -> &'a mut V where
 | ||
|         F: FnMut(&mut K, &mut V, V),
 | ||
|     {
 | ||
|         // Worst case, we'll find one empty bucket among `size + 1` buckets.
 | ||
|         let size = self.table.size();
 | ||
|         let mut probe = Bucket::new(&mut self.table, hash);
 | ||
|         let ib = probe.index();
 | ||
| 
 | ||
|         loop {
 | ||
|             let mut bucket = match probe.peek() {
 | ||
|                 Empty(bucket) => {
 | ||
|                     // Found a hole!
 | ||
|                     return bucket.put(hash, k, v).into_mut_refs().1;
 | ||
|                 }
 | ||
|                 Full(bucket) => bucket
 | ||
|             };
 | ||
| 
 | ||
|             // hash matches?
 | ||
|             if bucket.hash() == hash {
 | ||
|                 // key matches?
 | ||
|                 if k == *bucket.read_mut().0 {
 | ||
|                     let (bucket_k, bucket_v) = bucket.into_mut_refs();
 | ||
|                     debug_assert!(k == *bucket_k);
 | ||
|                     // Key already exists. Get its reference.
 | ||
|                     found_existing(bucket_k, bucket_v, v);
 | ||
|                     return bucket_v;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             let robin_ib = bucket.index() as isize - bucket.distance() as isize;
 | ||
| 
 | ||
|             if (ib as isize) < robin_ib {
 | ||
|                 // Found a luckier bucket than me. Better steal his spot.
 | ||
|                 return robin_hood(bucket, robin_ib as usize, hash, k, v);
 | ||
|             }
 | ||
| 
 | ||
|             probe = bucket.next();
 | ||
|             assert!(probe.index() != ib + size + 1);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// An iterator visiting all keys in arbitrary order.
 | ||
|     /// Iterator element type is `&'a K`.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert("a", 1);
 | ||
|     /// map.insert("b", 2);
 | ||
|     /// map.insert("c", 3);
 | ||
|     ///
 | ||
|     /// for key in map.keys() {
 | ||
|     ///     println!("{}", key);
 | ||
|     /// }
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn keys<'a>(&'a self) -> Keys<'a, K, V> {
 | ||
|         fn first<A, B>((a, _): (A, B)) -> A { a }
 | ||
|         let first: fn((&'a K,&'a V)) -> &'a K = first; // coerce to fn ptr
 | ||
| 
 | ||
|         Keys { inner: self.iter().map(first) }
 | ||
|     }
 | ||
| 
 | ||
|     /// An iterator visiting all values in arbitrary order.
 | ||
|     /// Iterator element type is `&'a V`.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert("a", 1);
 | ||
|     /// map.insert("b", 2);
 | ||
|     /// map.insert("c", 3);
 | ||
|     ///
 | ||
|     /// for val in map.values() {
 | ||
|     ///     println!("{}", val);
 | ||
|     /// }
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn values<'a>(&'a self) -> Values<'a, K, V> {
 | ||
|         fn second<A, B>((_, b): (A, B)) -> B { b }
 | ||
|         let second: fn((&'a K,&'a V)) -> &'a V = second; // coerce to fn ptr
 | ||
| 
 | ||
|         Values { inner: self.iter().map(second) }
 | ||
|     }
 | ||
| 
 | ||
|     /// An iterator visiting all key-value pairs in arbitrary order.
 | ||
|     /// Iterator element type is `(&'a K, &'a V)`.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert("a", 1);
 | ||
|     /// map.insert("b", 2);
 | ||
|     /// map.insert("c", 3);
 | ||
|     ///
 | ||
|     /// for (key, val) in map.iter() {
 | ||
|     ///     println!("key: {} val: {}", key, val);
 | ||
|     /// }
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn iter(&self) -> Iter<K, V> {
 | ||
|         Iter { inner: self.table.iter() }
 | ||
|     }
 | ||
| 
 | ||
|     /// An iterator visiting all key-value pairs in arbitrary order,
 | ||
|     /// with mutable references to the values.
 | ||
|     /// Iterator element type is `(&'a K, &'a mut V)`.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert("a", 1);
 | ||
|     /// map.insert("b", 2);
 | ||
|     /// map.insert("c", 3);
 | ||
|     ///
 | ||
|     /// // Update all values
 | ||
|     /// for (_, val) in map.iter_mut() {
 | ||
|     ///     *val *= 2;
 | ||
|     /// }
 | ||
|     ///
 | ||
|     /// for (key, val) in map.iter() {
 | ||
|     ///     println!("key: {} val: {}", key, val);
 | ||
|     /// }
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn iter_mut(&mut self) -> IterMut<K, V> {
 | ||
|         IterMut { inner: self.table.iter_mut() }
 | ||
|     }
 | ||
| 
 | ||
|     /// Gets the given key's corresponding entry in the map for in-place manipulation.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut letters = HashMap::new();
 | ||
|     ///
 | ||
|     /// for ch in "a short treatise on fungi".chars() {
 | ||
|     ///     let counter = letters.entry(ch).or_insert(0);
 | ||
|     ///     *counter += 1;
 | ||
|     /// }
 | ||
|     ///
 | ||
|     /// assert_eq!(letters[&'s'], 2);
 | ||
|     /// assert_eq!(letters[&'t'], 3);
 | ||
|     /// assert_eq!(letters[&'u'], 1);
 | ||
|     /// assert_eq!(letters.get(&'y'), None);
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn entry(&mut self, key: K) -> Entry<K, V> {
 | ||
|         // Gotta resize now.
 | ||
|         self.reserve(1);
 | ||
| 
 | ||
|         let hash = self.make_hash(&key);
 | ||
|         search_entry_hashed(&mut self.table, hash, key)
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns the number of elements in the map.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut a = HashMap::new();
 | ||
|     /// assert_eq!(a.len(), 0);
 | ||
|     /// a.insert(1, "a");
 | ||
|     /// assert_eq!(a.len(), 1);
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn len(&self) -> usize { self.table.size() }
 | ||
| 
 | ||
|     /// Returns true if the map contains no elements.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut a = HashMap::new();
 | ||
|     /// assert!(a.is_empty());
 | ||
|     /// a.insert(1, "a");
 | ||
|     /// assert!(!a.is_empty());
 | ||
|     /// ```
 | ||
|     #[inline]
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn is_empty(&self) -> bool { self.len() == 0 }
 | ||
| 
 | ||
|     /// Clears the map, returning all key-value pairs as an iterator. Keeps the
 | ||
|     /// allocated memory for reuse.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// # #![feature(std_misc)]
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut a = HashMap::new();
 | ||
|     /// a.insert(1, "a");
 | ||
|     /// a.insert(2, "b");
 | ||
|     ///
 | ||
|     /// for (k, v) in a.drain().take(1) {
 | ||
|     ///     assert!(k == 1 || k == 2);
 | ||
|     ///     assert!(v == "a" || v == "b");
 | ||
|     /// }
 | ||
|     ///
 | ||
|     /// assert!(a.is_empty());
 | ||
|     /// ```
 | ||
|     #[inline]
 | ||
|     #[unstable(feature = "std_misc",
 | ||
|                reason = "matches collection reform specification, waiting for dust to settle")]
 | ||
|     pub fn drain(&mut self) -> Drain<K, V> {
 | ||
|         fn last_two<A, B, C>((_, b, c): (A, B, C)) -> (B, C) { (b, c) }
 | ||
|         let last_two: fn((SafeHash, K, V)) -> (K, V) = last_two; // coerce to fn pointer
 | ||
| 
 | ||
|         Drain {
 | ||
|             inner: self.table.drain().map(last_two),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Clears the map, removing all key-value pairs. Keeps the allocated memory
 | ||
|     /// for reuse.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut a = HashMap::new();
 | ||
|     /// a.insert(1, "a");
 | ||
|     /// a.clear();
 | ||
|     /// assert!(a.is_empty());
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     #[inline]
 | ||
|     pub fn clear(&mut self) {
 | ||
|         self.drain();
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a reference to the value corresponding to the key.
 | ||
|     ///
 | ||
|     /// The key may be any borrowed form of the map's key type, but
 | ||
|     /// `Hash` and `Eq` on the borrowed form *must* match those for
 | ||
|     /// the key type.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert(1, "a");
 | ||
|     /// assert_eq!(map.get(&1), Some(&"a"));
 | ||
|     /// assert_eq!(map.get(&2), None);
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V>
 | ||
|         where K: Borrow<Q>, Q: Hash + Eq
 | ||
|     {
 | ||
|         self.search(k).map(|bucket| bucket.into_refs().1)
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns true if the map contains a value for the specified key.
 | ||
|     ///
 | ||
|     /// The key may be any borrowed form of the map's key type, but
 | ||
|     /// `Hash` and `Eq` on the borrowed form *must* match those for
 | ||
|     /// the key type.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert(1, "a");
 | ||
|     /// assert_eq!(map.contains_key(&1), true);
 | ||
|     /// assert_eq!(map.contains_key(&2), false);
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
 | ||
|         where K: Borrow<Q>, Q: Hash + Eq
 | ||
|     {
 | ||
|         self.search(k).is_some()
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a mutable reference to the value corresponding to the key.
 | ||
|     ///
 | ||
|     /// The key may be any borrowed form of the map's key type, but
 | ||
|     /// `Hash` and `Eq` on the borrowed form *must* match those for
 | ||
|     /// the key type.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert(1, "a");
 | ||
|     /// if let Some(x) = map.get_mut(&1) {
 | ||
|     ///     *x = "b";
 | ||
|     /// }
 | ||
|     /// assert_eq!(map[&1], "b");
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
 | ||
|         where K: Borrow<Q>, Q: Hash + Eq
 | ||
|     {
 | ||
|         self.search_mut(k).map(|bucket| bucket.into_mut_refs().1)
 | ||
|     }
 | ||
| 
 | ||
|     /// Inserts a key-value pair into the map. If the key already had a value
 | ||
|     /// present in the map, that value is returned. Otherwise, `None` is returned.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// assert_eq!(map.insert(37, "a"), None);
 | ||
|     /// assert_eq!(map.is_empty(), false);
 | ||
|     ///
 | ||
|     /// map.insert(37, "b");
 | ||
|     /// assert_eq!(map.insert(37, "c"), Some("b"));
 | ||
|     /// assert_eq!(map[&37], "c");
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn insert(&mut self, k: K, v: V) -> Option<V> {
 | ||
|         let hash = self.make_hash(&k);
 | ||
|         self.reserve(1);
 | ||
| 
 | ||
|         let mut retval = None;
 | ||
|         self.insert_or_replace_with(hash, k, v, |_, val_ref, val| {
 | ||
|             retval = Some(replace(val_ref, val));
 | ||
|         });
 | ||
|         retval
 | ||
|     }
 | ||
| 
 | ||
|     /// Removes a key from the map, returning the value at the key if the key
 | ||
|     /// was previously in the map.
 | ||
|     ///
 | ||
|     /// The key may be any borrowed form of the map's key type, but
 | ||
|     /// `Hash` and `Eq` on the borrowed form *must* match those for
 | ||
|     /// the key type.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert(1, "a");
 | ||
|     /// assert_eq!(map.remove(&1), Some("a"));
 | ||
|     /// assert_eq!(map.remove(&1), None);
 | ||
|     /// ```
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V>
 | ||
|         where K: Borrow<Q>, Q: Hash + Eq
 | ||
|     {
 | ||
|         if self.table.size() == 0 {
 | ||
|             return None
 | ||
|         }
 | ||
| 
 | ||
|         self.search_mut(k).map(|bucket| pop_internal(bucket).1)
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| fn search_entry_hashed<'a, K: Eq, V>(table: &'a mut RawTable<K,V>, hash: SafeHash, k: K)
 | ||
|         -> Entry<'a, K, V>
 | ||
| {
 | ||
|     // Worst case, we'll find one empty bucket among `size + 1` buckets.
 | ||
|     let size = table.size();
 | ||
|     let mut probe = Bucket::new(table, hash);
 | ||
|     let ib = probe.index();
 | ||
| 
 | ||
|     loop {
 | ||
|         let bucket = match probe.peek() {
 | ||
|             Empty(bucket) => {
 | ||
|                 // Found a hole!
 | ||
|                 return Vacant(VacantEntry {
 | ||
|                     hash: hash,
 | ||
|                     key: k,
 | ||
|                     elem: NoElem(bucket),
 | ||
|                 });
 | ||
|             },
 | ||
|             Full(bucket) => bucket
 | ||
|         };
 | ||
| 
 | ||
|         // hash matches?
 | ||
|         if bucket.hash() == hash {
 | ||
|             // key matches?
 | ||
|             if k == *bucket.read().0 {
 | ||
|                 return Occupied(OccupiedEntry{
 | ||
|                     elem: bucket,
 | ||
|                 });
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         let robin_ib = bucket.index() as isize - bucket.distance() as isize;
 | ||
| 
 | ||
|         if (ib as isize) < robin_ib {
 | ||
|             // Found a luckier bucket than me. Better steal his spot.
 | ||
|             return Vacant(VacantEntry {
 | ||
|                 hash: hash,
 | ||
|                 key: k,
 | ||
|                 elem: NeqElem(bucket, robin_ib as usize),
 | ||
|             });
 | ||
|         }
 | ||
| 
 | ||
|         probe = bucket.next();
 | ||
|         assert!(probe.index() != ib + size + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<K, V, S> PartialEq for HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, V: PartialEq, S: HashState
 | ||
| {
 | ||
|     fn eq(&self, other: &HashMap<K, V, S>) -> bool {
 | ||
|         if self.len() != other.len() { return false; }
 | ||
| 
 | ||
|         self.iter().all(|(key, value)|
 | ||
|             other.get(key).map_or(false, |v| *value == *v)
 | ||
|         )
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<K, V, S> Eq for HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, V: Eq, S: HashState
 | ||
| {}
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<K, V, S> Debug for HashMap<K, V, S>
 | ||
|     where K: Eq + Hash + Debug, V: Debug, S: HashState
 | ||
| {
 | ||
|     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 | ||
|         f.debug_map().entries(self.iter()).finish()
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<K, V, S> Default for HashMap<K, V, S>
 | ||
|     where K: Eq + Hash,
 | ||
|           S: HashState + Default,
 | ||
| {
 | ||
|     fn default() -> HashMap<K, V, S> {
 | ||
|         HashMap::with_hash_state(Default::default())
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, Q: ?Sized, V, S> Index<&'a Q> for HashMap<K, V, S>
 | ||
|     where K: Eq + Hash + Borrow<Q>,
 | ||
|           Q: Eq + Hash,
 | ||
|           S: HashState,
 | ||
| {
 | ||
|     type Output = V;
 | ||
| 
 | ||
|     #[inline]
 | ||
|     fn index(&self, index: &Q) -> &V {
 | ||
|         self.get(index).expect("no entry found for key")
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// HashMap iterator.
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub struct Iter<'a, K: 'a, V: 'a> {
 | ||
|     inner: table::Iter<'a, K, V>
 | ||
| }
 | ||
| 
 | ||
| // FIXME(#19839) Remove in favor of `#[derive(Clone)]`
 | ||
| impl<'a, K, V> Clone for Iter<'a, K, V> {
 | ||
|     fn clone(&self) -> Iter<'a, K, V> {
 | ||
|         Iter {
 | ||
|             inner: self.inner.clone()
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// HashMap mutable values iterator.
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub struct IterMut<'a, K: 'a, V: 'a> {
 | ||
|     inner: table::IterMut<'a, K, V>
 | ||
| }
 | ||
| 
 | ||
| /// HashMap move iterator.
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub struct IntoIter<K, V> {
 | ||
|     inner: iter::Map<table::IntoIter<K, V>, fn((SafeHash, K, V)) -> (K, V)>
 | ||
| }
 | ||
| 
 | ||
| /// HashMap keys iterator.
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub struct Keys<'a, K: 'a, V: 'a> {
 | ||
|     inner: Map<Iter<'a, K, V>, fn((&'a K, &'a V)) -> &'a K>
 | ||
| }
 | ||
| 
 | ||
| // FIXME(#19839) Remove in favor of `#[derive(Clone)]`
 | ||
| impl<'a, K, V> Clone for Keys<'a, K, V> {
 | ||
|     fn clone(&self) -> Keys<'a, K, V> {
 | ||
|         Keys {
 | ||
|             inner: self.inner.clone()
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// HashMap values iterator.
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub struct Values<'a, K: 'a, V: 'a> {
 | ||
|     inner: Map<Iter<'a, K, V>, fn((&'a K, &'a V)) -> &'a V>
 | ||
| }
 | ||
| 
 | ||
| // FIXME(#19839) Remove in favor of `#[derive(Clone)]`
 | ||
| impl<'a, K, V> Clone for Values<'a, K, V> {
 | ||
|     fn clone(&self) -> Values<'a, K, V> {
 | ||
|         Values {
 | ||
|             inner: self.inner.clone()
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// HashMap drain iterator.
 | ||
| #[unstable(feature = "std_misc",
 | ||
|            reason = "matches collection reform specification, waiting for dust to settle")]
 | ||
| pub struct Drain<'a, K: 'a, V: 'a> {
 | ||
|     inner: iter::Map<table::Drain<'a, K, V>, fn((SafeHash, K, V)) -> (K, V)>
 | ||
| }
 | ||
| 
 | ||
| /// A view into a single occupied location in a HashMap.
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub struct OccupiedEntry<'a, K: 'a, V: 'a> {
 | ||
|     elem: FullBucket<K, V, &'a mut RawTable<K, V>>,
 | ||
| }
 | ||
| 
 | ||
| /// A view into a single empty location in a HashMap.
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub struct VacantEntry<'a, K: 'a, V: 'a> {
 | ||
|     hash: SafeHash,
 | ||
|     key: K,
 | ||
|     elem: VacantEntryState<K, V, &'a mut RawTable<K, V>>,
 | ||
| }
 | ||
| 
 | ||
| /// A view into a single location in a map, which may be vacant or occupied.
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| pub enum Entry<'a, K: 'a, V: 'a> {
 | ||
|     /// An occupied Entry.
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     Occupied(OccupiedEntry<'a, K, V>),
 | ||
| 
 | ||
|     /// A vacant Entry.
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     Vacant(VacantEntry<'a, K, V>),
 | ||
| }
 | ||
| 
 | ||
| /// Possible states of a VacantEntry.
 | ||
| enum VacantEntryState<K, V, M> {
 | ||
|     /// The index is occupied, but the key to insert has precedence,
 | ||
|     /// and will kick the current one out on insertion.
 | ||
|     NeqElem(FullBucket<K, V, M>, usize),
 | ||
|     /// The index is genuinely vacant.
 | ||
|     NoElem(EmptyBucket<K, V, M>),
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, S: HashState
 | ||
| {
 | ||
|     type Item = (&'a K, &'a V);
 | ||
|     type IntoIter = Iter<'a, K, V>;
 | ||
| 
 | ||
|     fn into_iter(self) -> Iter<'a, K, V> {
 | ||
|         self.iter()
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, S: HashState
 | ||
| {
 | ||
|     type Item = (&'a K, &'a mut V);
 | ||
|     type IntoIter = IterMut<'a, K, V>;
 | ||
| 
 | ||
|     fn into_iter(mut self) -> IterMut<'a, K, V> {
 | ||
|         self.iter_mut()
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<K, V, S> IntoIterator for HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, S: HashState
 | ||
| {
 | ||
|     type Item = (K, V);
 | ||
|     type IntoIter = IntoIter<K, V>;
 | ||
| 
 | ||
|     /// Creates a consuming iterator, that is, one that moves each key-value
 | ||
|     /// pair out of the map in arbitrary order. The map cannot be used after
 | ||
|     /// calling this.
 | ||
|     ///
 | ||
|     /// # Examples
 | ||
|     ///
 | ||
|     /// ```
 | ||
|     /// use std::collections::HashMap;
 | ||
|     ///
 | ||
|     /// let mut map = HashMap::new();
 | ||
|     /// map.insert("a", 1);
 | ||
|     /// map.insert("b", 2);
 | ||
|     /// map.insert("c", 3);
 | ||
|     ///
 | ||
|     /// // Not possible with .iter()
 | ||
|     /// let vec: Vec<(&str, isize)> = map.into_iter().collect();
 | ||
|     /// ```
 | ||
|     fn into_iter(self) -> IntoIter<K, V> {
 | ||
|         fn last_two<A, B, C>((_, b, c): (A, B, C)) -> (B, C) { (b, c) }
 | ||
|         let last_two: fn((SafeHash, K, V)) -> (K, V) = last_two;
 | ||
| 
 | ||
|         IntoIter {
 | ||
|             inner: self.table.into_iter().map(last_two)
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> Iterator for Iter<'a, K, V> {
 | ||
|     type Item = (&'a K, &'a V);
 | ||
| 
 | ||
|     #[inline] fn next(&mut self) -> Option<(&'a K, &'a V)> { self.inner.next() }
 | ||
|     #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
 | ||
| }
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
 | ||
|     #[inline] fn len(&self) -> usize { self.inner.len() }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> Iterator for IterMut<'a, K, V> {
 | ||
|     type Item = (&'a K, &'a mut V);
 | ||
| 
 | ||
|     #[inline] fn next(&mut self) -> Option<(&'a K, &'a mut V)> { self.inner.next() }
 | ||
|     #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
 | ||
| }
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
 | ||
|     #[inline] fn len(&self) -> usize { self.inner.len() }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<K, V> Iterator for IntoIter<K, V> {
 | ||
|     type Item = (K, V);
 | ||
| 
 | ||
|     #[inline] fn next(&mut self) -> Option<(K, V)> { self.inner.next() }
 | ||
|     #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
 | ||
| }
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<K, V> ExactSizeIterator for IntoIter<K, V> {
 | ||
|     #[inline] fn len(&self) -> usize { self.inner.len() }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> Iterator for Keys<'a, K, V> {
 | ||
|     type Item = &'a K;
 | ||
| 
 | ||
|     #[inline] fn next(&mut self) -> Option<(&'a K)> { self.inner.next() }
 | ||
|     #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
 | ||
| }
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {
 | ||
|     #[inline] fn len(&self) -> usize { self.inner.len() }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> Iterator for Values<'a, K, V> {
 | ||
|     type Item = &'a V;
 | ||
| 
 | ||
|     #[inline] fn next(&mut self) -> Option<(&'a V)> { self.inner.next() }
 | ||
|     #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
 | ||
| }
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {
 | ||
|     #[inline] fn len(&self) -> usize { self.inner.len() }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> Iterator for Drain<'a, K, V> {
 | ||
|     type Item = (K, V);
 | ||
| 
 | ||
|     #[inline] fn next(&mut self) -> Option<(K, V)> { self.inner.next() }
 | ||
|     #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
 | ||
| }
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
 | ||
|     #[inline] fn len(&self) -> usize { self.inner.len() }
 | ||
| }
 | ||
| 
 | ||
| impl<'a, K, V> Entry<'a, K, V> {
 | ||
|     #[unstable(feature = "std_misc",
 | ||
|                reason = "will soon be replaced by or_insert")]
 | ||
|     #[deprecated(since = "1.0",
 | ||
|                 reason = "replaced with more ergonomic `or_insert` and `or_insert_with`")]
 | ||
|     /// Returns a mutable reference to the entry if occupied, or the VacantEntry if vacant
 | ||
|     pub fn get(self) -> Result<&'a mut V, VacantEntry<'a, K, V>> {
 | ||
|         match self {
 | ||
|             Occupied(entry) => Ok(entry.into_mut()),
 | ||
|             Vacant(entry) => Err(entry),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     /// Ensures a value is in the entry by inserting the default if empty, and returns
 | ||
|     /// a mutable reference to the value in the entry.
 | ||
|     pub fn or_insert(self, default: V) -> &'a mut V {
 | ||
|         match self {
 | ||
|             Occupied(entry) => entry.into_mut(),
 | ||
|             Vacant(entry) => entry.insert(default),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     /// Ensures a value is in the entry by inserting the result of the default function if empty,
 | ||
|     /// and returns a mutable reference to the value in the entry.
 | ||
|     pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
 | ||
|         match self {
 | ||
|             Occupied(entry) => entry.into_mut(),
 | ||
|             Vacant(entry) => entry.insert(default()),
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<'a, K, V> OccupiedEntry<'a, K, V> {
 | ||
|     /// Gets a reference to the value in the entry.
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn get(&self) -> &V {
 | ||
|         self.elem.read().1
 | ||
|     }
 | ||
| 
 | ||
|     /// Gets a mutable reference to the value in the entry.
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn get_mut(&mut self) -> &mut V {
 | ||
|         self.elem.read_mut().1
 | ||
|     }
 | ||
| 
 | ||
|     /// Converts the OccupiedEntry into a mutable reference to the value in the entry
 | ||
|     /// with a lifetime bound to the map itself
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn into_mut(self) -> &'a mut V {
 | ||
|         self.elem.into_mut_refs().1
 | ||
|     }
 | ||
| 
 | ||
|     /// Sets the value of the entry, and returns the entry's old value
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn insert(&mut self, mut value: V) -> V {
 | ||
|         let old_value = self.get_mut();
 | ||
|         mem::swap(&mut value, old_value);
 | ||
|         value
 | ||
|     }
 | ||
| 
 | ||
|     /// Takes the value out of the entry, and returns it
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn remove(self) -> V {
 | ||
|         pop_internal(self.elem).1
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> {
 | ||
|     /// Sets the value of the entry with the VacantEntry's key,
 | ||
|     /// and returns a mutable reference to it
 | ||
|     #[stable(feature = "rust1", since = "1.0.0")]
 | ||
|     pub fn insert(self, value: V) -> &'a mut V {
 | ||
|         match self.elem {
 | ||
|             NeqElem(bucket, ib) => {
 | ||
|                 robin_hood(bucket, ib, self.hash, self.key, value)
 | ||
|             }
 | ||
|             NoElem(bucket) => {
 | ||
|                 bucket.put(self.hash, self.key, value).into_mut_refs().1
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, S: HashState + Default
 | ||
| {
 | ||
|     fn from_iter<T: IntoIterator<Item=(K, V)>>(iterable: T) -> HashMap<K, V, S> {
 | ||
|         let iter = iterable.into_iter();
 | ||
|         let lower = iter.size_hint().0;
 | ||
|         let mut map = HashMap::with_capacity_and_hash_state(lower,
 | ||
|                                                             Default::default());
 | ||
|         map.extend(iter);
 | ||
|         map
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S>
 | ||
|     where K: Eq + Hash, S: HashState
 | ||
| {
 | ||
|     fn extend<T: IntoIterator<Item=(K, V)>>(&mut self, iter: T) {
 | ||
|         for (k, v) in iter {
 | ||
|             self.insert(k, v);
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /// `RandomState` is the default state for `HashMap` types.
 | ||
| ///
 | ||
| /// A particular instance `RandomState` will create the same instances of
 | ||
| /// `Hasher`, but the hashers created by two different `RandomState`
 | ||
| /// instances are unlikely to produce the same result for the same values.
 | ||
| #[derive(Clone)]
 | ||
| #[unstable(feature = "std_misc",
 | ||
|            reason = "hashing an hash maps may be altered")]
 | ||
| pub struct RandomState {
 | ||
|     k0: u64,
 | ||
|     k1: u64,
 | ||
| }
 | ||
| 
 | ||
| #[unstable(feature = "std_misc",
 | ||
|            reason = "hashing an hash maps may be altered")]
 | ||
| impl RandomState {
 | ||
|     /// Constructs a new `RandomState` that is initialized with random keys.
 | ||
|     #[inline]
 | ||
|     #[allow(deprecated)]
 | ||
|     pub fn new() -> RandomState {
 | ||
|         let mut r = rand::thread_rng();
 | ||
|         RandomState { k0: r.gen(), k1: r.gen() }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[unstable(feature = "std_misc",
 | ||
|            reason = "hashing an hash maps may be altered")]
 | ||
| impl HashState for RandomState {
 | ||
|     type Hasher = SipHasher;
 | ||
|     #[inline]
 | ||
|     fn hasher(&self) -> SipHasher {
 | ||
|         SipHasher::new_with_keys(self.k0, self.k1)
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[stable(feature = "rust1", since = "1.0.0")]
 | ||
| impl Default for RandomState {
 | ||
|     #[inline]
 | ||
|     fn default() -> RandomState {
 | ||
|         RandomState::new()
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #[cfg(test)]
 | ||
| mod test_map {
 | ||
|     use prelude::v1::*;
 | ||
| 
 | ||
|     use super::HashMap;
 | ||
|     use super::Entry::{Occupied, Vacant};
 | ||
|     use iter::{range_inclusive, repeat};
 | ||
|     use cell::RefCell;
 | ||
|     use rand::{thread_rng, Rng};
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_create_capacity_zero() {
 | ||
|         let mut m = HashMap::with_capacity(0);
 | ||
| 
 | ||
|         assert!(m.insert(1, 1).is_none());
 | ||
| 
 | ||
|         assert!(m.contains_key(&1));
 | ||
|         assert!(!m.contains_key(&0));
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_insert() {
 | ||
|         let mut m = HashMap::new();
 | ||
|         assert_eq!(m.len(), 0);
 | ||
|         assert!(m.insert(1, 2).is_none());
 | ||
|         assert_eq!(m.len(), 1);
 | ||
|         assert!(m.insert(2, 4).is_none());
 | ||
|         assert_eq!(m.len(), 2);
 | ||
|         assert_eq!(*m.get(&1).unwrap(), 2);
 | ||
|         assert_eq!(*m.get(&2).unwrap(), 4);
 | ||
|     }
 | ||
| 
 | ||
|     thread_local! { static DROP_VECTOR: RefCell<Vec<isize>> = RefCell::new(Vec::new()) }
 | ||
| 
 | ||
|     #[derive(Hash, PartialEq, Eq)]
 | ||
|     struct Dropable {
 | ||
|         k: usize
 | ||
|     }
 | ||
| 
 | ||
|     impl Dropable {
 | ||
|         fn new(k: usize) -> Dropable {
 | ||
|             DROP_VECTOR.with(|slot| {
 | ||
|                 slot.borrow_mut()[k] += 1;
 | ||
|             });
 | ||
| 
 | ||
|             Dropable { k: k }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     impl Drop for Dropable {
 | ||
|         fn drop(&mut self) {
 | ||
|             DROP_VECTOR.with(|slot| {
 | ||
|                 slot.borrow_mut()[self.k] -= 1;
 | ||
|             });
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     impl Clone for Dropable {
 | ||
|         fn clone(&self) -> Dropable {
 | ||
|             Dropable::new(self.k)
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_drops() {
 | ||
|         DROP_VECTOR.with(|slot| {
 | ||
|             *slot.borrow_mut() = repeat(0).take(200).collect();
 | ||
|         });
 | ||
| 
 | ||
|         {
 | ||
|             let mut m = HashMap::new();
 | ||
| 
 | ||
|             DROP_VECTOR.with(|v| {
 | ||
|                 for i in 0..200 {
 | ||
|                     assert_eq!(v.borrow()[i], 0);
 | ||
|                 }
 | ||
|             });
 | ||
| 
 | ||
|             for i in 0..100 {
 | ||
|                 let d1 = Dropable::new(i);
 | ||
|                 let d2 = Dropable::new(i+100);
 | ||
|                 m.insert(d1, d2);
 | ||
|             }
 | ||
| 
 | ||
|             DROP_VECTOR.with(|v| {
 | ||
|                 for i in 0..200 {
 | ||
|                     assert_eq!(v.borrow()[i], 1);
 | ||
|                 }
 | ||
|             });
 | ||
| 
 | ||
|             for i in 0..50 {
 | ||
|                 let k = Dropable::new(i);
 | ||
|                 let v = m.remove(&k);
 | ||
| 
 | ||
|                 assert!(v.is_some());
 | ||
| 
 | ||
|                 DROP_VECTOR.with(|v| {
 | ||
|                     assert_eq!(v.borrow()[i], 1);
 | ||
|                     assert_eq!(v.borrow()[i+100], 1);
 | ||
|                 });
 | ||
|             }
 | ||
| 
 | ||
|             DROP_VECTOR.with(|v| {
 | ||
|                 for i in 0..50 {
 | ||
|                     assert_eq!(v.borrow()[i], 0);
 | ||
|                     assert_eq!(v.borrow()[i+100], 0);
 | ||
|                 }
 | ||
| 
 | ||
|                 for i in 50..100 {
 | ||
|                     assert_eq!(v.borrow()[i], 1);
 | ||
|                     assert_eq!(v.borrow()[i+100], 1);
 | ||
|                 }
 | ||
|             });
 | ||
|         }
 | ||
| 
 | ||
|         DROP_VECTOR.with(|v| {
 | ||
|             for i in 0..200 {
 | ||
|                 assert_eq!(v.borrow()[i], 0);
 | ||
|             }
 | ||
|         });
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_move_iter_drops() {
 | ||
|         DROP_VECTOR.with(|v| {
 | ||
|             *v.borrow_mut() = repeat(0).take(200).collect();
 | ||
|         });
 | ||
| 
 | ||
|         let hm = {
 | ||
|             let mut hm = HashMap::new();
 | ||
| 
 | ||
|             DROP_VECTOR.with(|v| {
 | ||
|                 for i in 0..200 {
 | ||
|                     assert_eq!(v.borrow()[i], 0);
 | ||
|                 }
 | ||
|             });
 | ||
| 
 | ||
|             for i in 0..100 {
 | ||
|                 let d1 = Dropable::new(i);
 | ||
|                 let d2 = Dropable::new(i+100);
 | ||
|                 hm.insert(d1, d2);
 | ||
|             }
 | ||
| 
 | ||
|             DROP_VECTOR.with(|v| {
 | ||
|                 for i in 0..200 {
 | ||
|                     assert_eq!(v.borrow()[i], 1);
 | ||
|                 }
 | ||
|             });
 | ||
| 
 | ||
|             hm
 | ||
|         };
 | ||
| 
 | ||
|         // By the way, ensure that cloning doesn't screw up the dropping.
 | ||
|         drop(hm.clone());
 | ||
| 
 | ||
|         {
 | ||
|             let mut half = hm.into_iter().take(50);
 | ||
| 
 | ||
|             DROP_VECTOR.with(|v| {
 | ||
|                 for i in 0..200 {
 | ||
|                     assert_eq!(v.borrow()[i], 1);
 | ||
|                 }
 | ||
|             });
 | ||
| 
 | ||
|             for _ in half.by_ref() {}
 | ||
| 
 | ||
|             DROP_VECTOR.with(|v| {
 | ||
|                 let nk = (0..100).filter(|&i| {
 | ||
|                     v.borrow()[i] == 1
 | ||
|                 }).count();
 | ||
| 
 | ||
|                 let nv = (0..100).filter(|&i| {
 | ||
|                     v.borrow()[i+100] == 1
 | ||
|                 }).count();
 | ||
| 
 | ||
|                 assert_eq!(nk, 50);
 | ||
|                 assert_eq!(nv, 50);
 | ||
|             });
 | ||
|         };
 | ||
| 
 | ||
|         DROP_VECTOR.with(|v| {
 | ||
|             for i in 0..200 {
 | ||
|                 assert_eq!(v.borrow()[i], 0);
 | ||
|             }
 | ||
|         });
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_empty_pop() {
 | ||
|         let mut m: HashMap<isize, bool> = HashMap::new();
 | ||
|         assert_eq!(m.remove(&0), None);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_lots_of_insertions() {
 | ||
|         let mut m = HashMap::new();
 | ||
| 
 | ||
|         // Try this a few times to make sure we never screw up the hashmap's
 | ||
|         // internal state.
 | ||
|         for _ in 0..10 {
 | ||
|             assert!(m.is_empty());
 | ||
| 
 | ||
|             for i in range_inclusive(1, 1000) {
 | ||
|                 assert!(m.insert(i, i).is_none());
 | ||
| 
 | ||
|                 for j in range_inclusive(1, i) {
 | ||
|                     let r = m.get(&j);
 | ||
|                     assert_eq!(r, Some(&j));
 | ||
|                 }
 | ||
| 
 | ||
|                 for j in range_inclusive(i+1, 1000) {
 | ||
|                     let r = m.get(&j);
 | ||
|                     assert_eq!(r, None);
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             for i in range_inclusive(1001, 2000) {
 | ||
|                 assert!(!m.contains_key(&i));
 | ||
|             }
 | ||
| 
 | ||
|             // remove forwards
 | ||
|             for i in range_inclusive(1, 1000) {
 | ||
|                 assert!(m.remove(&i).is_some());
 | ||
| 
 | ||
|                 for j in range_inclusive(1, i) {
 | ||
|                     assert!(!m.contains_key(&j));
 | ||
|                 }
 | ||
| 
 | ||
|                 for j in range_inclusive(i+1, 1000) {
 | ||
|                     assert!(m.contains_key(&j));
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             for i in range_inclusive(1, 1000) {
 | ||
|                 assert!(!m.contains_key(&i));
 | ||
|             }
 | ||
| 
 | ||
|             for i in range_inclusive(1, 1000) {
 | ||
|                 assert!(m.insert(i, i).is_none());
 | ||
|             }
 | ||
| 
 | ||
|             // remove backwards
 | ||
|             for i in (1..1001).rev() {
 | ||
|                 assert!(m.remove(&i).is_some());
 | ||
| 
 | ||
|                 for j in range_inclusive(i, 1000) {
 | ||
|                     assert!(!m.contains_key(&j));
 | ||
|                 }
 | ||
| 
 | ||
|                 for j in range_inclusive(1, i-1) {
 | ||
|                     assert!(m.contains_key(&j));
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_find_mut() {
 | ||
|         let mut m = HashMap::new();
 | ||
|         assert!(m.insert(1, 12).is_none());
 | ||
|         assert!(m.insert(2, 8).is_none());
 | ||
|         assert!(m.insert(5, 14).is_none());
 | ||
|         let new = 100;
 | ||
|         match m.get_mut(&5) {
 | ||
|             None => panic!(), Some(x) => *x = new
 | ||
|         }
 | ||
|         assert_eq!(m.get(&5), Some(&new));
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_insert_overwrite() {
 | ||
|         let mut m = HashMap::new();
 | ||
|         assert!(m.insert(1, 2).is_none());
 | ||
|         assert_eq!(*m.get(&1).unwrap(), 2);
 | ||
|         assert!(!m.insert(1, 3).is_none());
 | ||
|         assert_eq!(*m.get(&1).unwrap(), 3);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_insert_conflicts() {
 | ||
|         let mut m = HashMap::with_capacity(4);
 | ||
|         assert!(m.insert(1, 2).is_none());
 | ||
|         assert!(m.insert(5, 3).is_none());
 | ||
|         assert!(m.insert(9, 4).is_none());
 | ||
|         assert_eq!(*m.get(&9).unwrap(), 4);
 | ||
|         assert_eq!(*m.get(&5).unwrap(), 3);
 | ||
|         assert_eq!(*m.get(&1).unwrap(), 2);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_conflict_remove() {
 | ||
|         let mut m = HashMap::with_capacity(4);
 | ||
|         assert!(m.insert(1, 2).is_none());
 | ||
|         assert_eq!(*m.get(&1).unwrap(), 2);
 | ||
|         assert!(m.insert(5, 3).is_none());
 | ||
|         assert_eq!(*m.get(&1).unwrap(), 2);
 | ||
|         assert_eq!(*m.get(&5).unwrap(), 3);
 | ||
|         assert!(m.insert(9, 4).is_none());
 | ||
|         assert_eq!(*m.get(&1).unwrap(), 2);
 | ||
|         assert_eq!(*m.get(&5).unwrap(), 3);
 | ||
|         assert_eq!(*m.get(&9).unwrap(), 4);
 | ||
|         assert!(m.remove(&1).is_some());
 | ||
|         assert_eq!(*m.get(&9).unwrap(), 4);
 | ||
|         assert_eq!(*m.get(&5).unwrap(), 3);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_is_empty() {
 | ||
|         let mut m = HashMap::with_capacity(4);
 | ||
|         assert!(m.insert(1, 2).is_none());
 | ||
|         assert!(!m.is_empty());
 | ||
|         assert!(m.remove(&1).is_some());
 | ||
|         assert!(m.is_empty());
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_pop() {
 | ||
|         let mut m = HashMap::new();
 | ||
|         m.insert(1, 2);
 | ||
|         assert_eq!(m.remove(&1), Some(2));
 | ||
|         assert_eq!(m.remove(&1), None);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_iterate() {
 | ||
|         let mut m = HashMap::with_capacity(4);
 | ||
|         for i in 0..32 {
 | ||
|             assert!(m.insert(i, i*2).is_none());
 | ||
|         }
 | ||
|         assert_eq!(m.len(), 32);
 | ||
| 
 | ||
|         let mut observed: u32 = 0;
 | ||
| 
 | ||
|         for (k, v) in &m {
 | ||
|             assert_eq!(*v, *k * 2);
 | ||
|             observed |= 1 << *k;
 | ||
|         }
 | ||
|         assert_eq!(observed, 0xFFFF_FFFF);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_keys() {
 | ||
|         let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
 | ||
|         let map: HashMap<_, _> = vec.into_iter().collect();
 | ||
|         let keys: Vec<_> = map.keys().cloned().collect();
 | ||
|         assert_eq!(keys.len(), 3);
 | ||
|         assert!(keys.contains(&1));
 | ||
|         assert!(keys.contains(&2));
 | ||
|         assert!(keys.contains(&3));
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_values() {
 | ||
|         let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
 | ||
|         let map: HashMap<_, _> = vec.into_iter().collect();
 | ||
|         let values: Vec<_> = map.values().cloned().collect();
 | ||
|         assert_eq!(values.len(), 3);
 | ||
|         assert!(values.contains(&'a'));
 | ||
|         assert!(values.contains(&'b'));
 | ||
|         assert!(values.contains(&'c'));
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_find() {
 | ||
|         let mut m = HashMap::new();
 | ||
|         assert!(m.get(&1).is_none());
 | ||
|         m.insert(1, 2);
 | ||
|         match m.get(&1) {
 | ||
|             None => panic!(),
 | ||
|             Some(v) => assert_eq!(*v, 2)
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_eq() {
 | ||
|         let mut m1 = HashMap::new();
 | ||
|         m1.insert(1, 2);
 | ||
|         m1.insert(2, 3);
 | ||
|         m1.insert(3, 4);
 | ||
| 
 | ||
|         let mut m2 = HashMap::new();
 | ||
|         m2.insert(1, 2);
 | ||
|         m2.insert(2, 3);
 | ||
| 
 | ||
|         assert!(m1 != m2);
 | ||
| 
 | ||
|         m2.insert(3, 4);
 | ||
| 
 | ||
|         assert_eq!(m1, m2);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_show() {
 | ||
|         let mut map = HashMap::new();
 | ||
|         let empty: HashMap<i32, i32> = HashMap::new();
 | ||
| 
 | ||
|         map.insert(1, 2);
 | ||
|         map.insert(3, 4);
 | ||
| 
 | ||
|         let map_str = format!("{:?}", map);
 | ||
| 
 | ||
|         assert!(map_str == "{1: 2, 3: 4}" ||
 | ||
|                 map_str == "{3: 4, 1: 2}");
 | ||
|         assert_eq!(format!("{:?}", empty), "{}");
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_expand() {
 | ||
|         let mut m = HashMap::new();
 | ||
| 
 | ||
|         assert_eq!(m.len(), 0);
 | ||
|         assert!(m.is_empty());
 | ||
| 
 | ||
|         let mut i = 0;
 | ||
|         let old_cap = m.table.capacity();
 | ||
|         while old_cap == m.table.capacity() {
 | ||
|             m.insert(i, i);
 | ||
|             i += 1;
 | ||
|         }
 | ||
| 
 | ||
|         assert_eq!(m.len(), i);
 | ||
|         assert!(!m.is_empty());
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_behavior_resize_policy() {
 | ||
|         let mut m = HashMap::new();
 | ||
| 
 | ||
|         assert_eq!(m.len(), 0);
 | ||
|         assert_eq!(m.table.capacity(), 0);
 | ||
|         assert!(m.is_empty());
 | ||
| 
 | ||
|         m.insert(0, 0);
 | ||
|         m.remove(&0);
 | ||
|         assert!(m.is_empty());
 | ||
|         let initial_cap = m.table.capacity();
 | ||
|         m.reserve(initial_cap);
 | ||
|         let cap = m.table.capacity();
 | ||
| 
 | ||
|         assert_eq!(cap, initial_cap * 2);
 | ||
| 
 | ||
|         let mut i = 0;
 | ||
|         for _ in 0..cap * 3 / 4 {
 | ||
|             m.insert(i, i);
 | ||
|             i += 1;
 | ||
|         }
 | ||
|         // three quarters full
 | ||
| 
 | ||
|         assert_eq!(m.len(), i);
 | ||
|         assert_eq!(m.table.capacity(), cap);
 | ||
| 
 | ||
|         for _ in 0..cap / 4 {
 | ||
|             m.insert(i, i);
 | ||
|             i += 1;
 | ||
|         }
 | ||
|         // half full
 | ||
| 
 | ||
|         let new_cap = m.table.capacity();
 | ||
|         assert_eq!(new_cap, cap * 2);
 | ||
| 
 | ||
|         for _ in 0..cap / 2 - 1 {
 | ||
|             i -= 1;
 | ||
|             m.remove(&i);
 | ||
|             assert_eq!(m.table.capacity(), new_cap);
 | ||
|         }
 | ||
|         // A little more than one quarter full.
 | ||
|         m.shrink_to_fit();
 | ||
|         assert_eq!(m.table.capacity(), cap);
 | ||
|         // again, a little more than half full
 | ||
|         for _ in 0..cap / 2 - 1 {
 | ||
|             i -= 1;
 | ||
|             m.remove(&i);
 | ||
|         }
 | ||
|         m.shrink_to_fit();
 | ||
| 
 | ||
|         assert_eq!(m.len(), i);
 | ||
|         assert!(!m.is_empty());
 | ||
|         assert_eq!(m.table.capacity(), initial_cap);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_reserve_shrink_to_fit() {
 | ||
|         let mut m = HashMap::new();
 | ||
|         m.insert(0, 0);
 | ||
|         m.remove(&0);
 | ||
|         assert!(m.capacity() >= m.len());
 | ||
|         for i in 0..128 {
 | ||
|             m.insert(i, i);
 | ||
|         }
 | ||
|         m.reserve(256);
 | ||
| 
 | ||
|         let usable_cap = m.capacity();
 | ||
|         for i in 128..(128 + 256) {
 | ||
|             m.insert(i, i);
 | ||
|             assert_eq!(m.capacity(), usable_cap);
 | ||
|         }
 | ||
| 
 | ||
|         for i in 100..(128 + 256) {
 | ||
|             assert_eq!(m.remove(&i), Some(i));
 | ||
|         }
 | ||
|         m.shrink_to_fit();
 | ||
| 
 | ||
|         assert_eq!(m.len(), 100);
 | ||
|         assert!(!m.is_empty());
 | ||
|         assert!(m.capacity() >= m.len());
 | ||
| 
 | ||
|         for i in 0..100 {
 | ||
|             assert_eq!(m.remove(&i), Some(i));
 | ||
|         }
 | ||
|         m.shrink_to_fit();
 | ||
|         m.insert(0, 0);
 | ||
| 
 | ||
|         assert_eq!(m.len(), 1);
 | ||
|         assert!(m.capacity() >= m.len());
 | ||
|         assert_eq!(m.remove(&0), Some(0));
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_from_iter() {
 | ||
|         let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
 | ||
| 
 | ||
|         let map: HashMap<_, _> = xs.iter().cloned().collect();
 | ||
| 
 | ||
|         for &(k, v) in &xs {
 | ||
|             assert_eq!(map.get(&k), Some(&v));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_size_hint() {
 | ||
|         let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
 | ||
| 
 | ||
|         let map: HashMap<_, _>  = xs.iter().cloned().collect();
 | ||
| 
 | ||
|         let mut iter = map.iter();
 | ||
| 
 | ||
|         for _ in iter.by_ref().take(3) {}
 | ||
| 
 | ||
|         assert_eq!(iter.size_hint(), (3, Some(3)));
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_iter_len() {
 | ||
|         let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
 | ||
| 
 | ||
|         let map: HashMap<_, _>  = xs.iter().cloned().collect();
 | ||
| 
 | ||
|         let mut iter = map.iter();
 | ||
| 
 | ||
|         for _ in iter.by_ref().take(3) {}
 | ||
| 
 | ||
|         assert_eq!(iter.len(), 3);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_mut_size_hint() {
 | ||
|         let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
 | ||
| 
 | ||
|         let mut map: HashMap<_, _>  = xs.iter().cloned().collect();
 | ||
| 
 | ||
|         let mut iter = map.iter_mut();
 | ||
| 
 | ||
|         for _ in iter.by_ref().take(3) {}
 | ||
| 
 | ||
|         assert_eq!(iter.size_hint(), (3, Some(3)));
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_iter_mut_len() {
 | ||
|         let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
 | ||
| 
 | ||
|         let mut map: HashMap<_, _>  = xs.iter().cloned().collect();
 | ||
| 
 | ||
|         let mut iter = map.iter_mut();
 | ||
| 
 | ||
|         for _ in iter.by_ref().take(3) {}
 | ||
| 
 | ||
|         assert_eq!(iter.len(), 3);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_index() {
 | ||
|         let mut map = HashMap::new();
 | ||
| 
 | ||
|         map.insert(1, 2);
 | ||
|         map.insert(2, 1);
 | ||
|         map.insert(3, 4);
 | ||
| 
 | ||
|         assert_eq!(map[&2], 1);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     #[should_panic]
 | ||
|     fn test_index_nonexistent() {
 | ||
|         let mut map = HashMap::new();
 | ||
| 
 | ||
|         map.insert(1, 2);
 | ||
|         map.insert(2, 1);
 | ||
|         map.insert(3, 4);
 | ||
| 
 | ||
|         map[&4];
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_entry(){
 | ||
|         let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)];
 | ||
| 
 | ||
|         let mut map: HashMap<_, _> = xs.iter().cloned().collect();
 | ||
| 
 | ||
|         // Existing key (insert)
 | ||
|         match map.entry(1) {
 | ||
|             Vacant(_) => unreachable!(),
 | ||
|             Occupied(mut view) => {
 | ||
|                 assert_eq!(view.get(), &10);
 | ||
|                 assert_eq!(view.insert(100), 10);
 | ||
|             }
 | ||
|         }
 | ||
|         assert_eq!(map.get(&1).unwrap(), &100);
 | ||
|         assert_eq!(map.len(), 6);
 | ||
| 
 | ||
| 
 | ||
|         // Existing key (update)
 | ||
|         match map.entry(2) {
 | ||
|             Vacant(_) => unreachable!(),
 | ||
|             Occupied(mut view) => {
 | ||
|                 let v = view.get_mut();
 | ||
|                 let new_v = (*v) * 10;
 | ||
|                 *v = new_v;
 | ||
|             }
 | ||
|         }
 | ||
|         assert_eq!(map.get(&2).unwrap(), &200);
 | ||
|         assert_eq!(map.len(), 6);
 | ||
| 
 | ||
|         // Existing key (take)
 | ||
|         match map.entry(3) {
 | ||
|             Vacant(_) => unreachable!(),
 | ||
|             Occupied(view) => {
 | ||
|                 assert_eq!(view.remove(), 30);
 | ||
|             }
 | ||
|         }
 | ||
|         assert_eq!(map.get(&3), None);
 | ||
|         assert_eq!(map.len(), 5);
 | ||
| 
 | ||
| 
 | ||
|         // Inexistent key (insert)
 | ||
|         match map.entry(10) {
 | ||
|             Occupied(_) => unreachable!(),
 | ||
|             Vacant(view) => {
 | ||
|                 assert_eq!(*view.insert(1000), 1000);
 | ||
|             }
 | ||
|         }
 | ||
|         assert_eq!(map.get(&10).unwrap(), &1000);
 | ||
|         assert_eq!(map.len(), 6);
 | ||
|     }
 | ||
| 
 | ||
|     #[test]
 | ||
|     fn test_entry_take_doesnt_corrupt() {
 | ||
|         #![allow(deprecated)] //rand
 | ||
|         // Test for #19292
 | ||
|         fn check(m: &HashMap<isize, ()>) {
 | ||
|             for k in m.keys() {
 | ||
|                 assert!(m.contains_key(k),
 | ||
|                         "{} is in keys() but not in the map?", k);
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         let mut m = HashMap::new();
 | ||
|         let mut rng = thread_rng();
 | ||
| 
 | ||
|         // Populate the map with some items.
 | ||
|         for _ in 0..50 {
 | ||
|             let x = rng.gen_range(-10, 10);
 | ||
|             m.insert(x, ());
 | ||
|         }
 | ||
| 
 | ||
|         for i in 0..1000 {
 | ||
|             let x = rng.gen_range(-10, 10);
 | ||
|             match m.entry(x) {
 | ||
|                 Vacant(_) => {},
 | ||
|                 Occupied(e) => {
 | ||
|                     println!("{}: remove {}", i, x);
 | ||
|                     e.remove();
 | ||
|                 },
 | ||
|             }
 | ||
| 
 | ||
|             check(&m);
 | ||
|         }
 | ||
|     }
 | ||
| }
 |