Files
linguist/samples/Coq/Basics.v
2012-07-23 15:52:49 -05:00

708 lines
14 KiB
Coq
Executable File

Inductive day : Type :=
| monday : day
| tuesday : day
| wednesday : day
| thursday : day
| friday : day
| saturday : day
| sunday : day.
Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday
| tuesday => wednesday
| wednesday => thursday
| thursday => friday
| friday => monday
| saturday => monday
| sunday => monday
end.
Example test_next_weekday:
(next_weekday (next_weekday saturday)) = tuesday.
Proof. simpl. reflexivity. Qed.
Inductive bool : Type :=
| true : bool
| false : bool.
Definition negb (b:bool) : bool :=
match b with
| true => false
| false => true
end.
Definition andb (b1:bool) (b2:bool) : bool :=
match b1 with
| true => b2
| false => false
end.
Definition orb (b1:bool) (b2:bool) : bool :=
match b1 with
| true => true
| false => b2
end.
Example test_orb1: (orb true false) = true.
Proof. simpl. reflexivity. Qed.
Example test_orb2: (orb false false) = false.
Proof. simpl. reflexivity. Qed.
Example test_orb3: (orb false true) = true.
Proof. simpl. reflexivity. Qed.
Example test_orb4: (orb true true) = true.
Proof. simpl. reflexivity. Qed.
Definition nandb (b1: bool) (b2:bool) : bool :=
match b1 with
| true => match b2 with
| false => true
| true => false
end
| false => true
end.
Example test_nandb1: (nandb true false) = true.
Proof. simpl. reflexivity. Qed.
Example test_nandb2: (nandb false false) = true.
Proof. simpl. reflexivity. Qed.
Example test_nandb3: (nandb false true) = true.
Proof. simpl. reflexivity. Qed.
Example test_nandb4: (nandb true true) = false.
Proof. simpl. reflexivity. Qed.
Definition andb3 (b1: bool) (b2:bool) (b3:bool) : bool :=
match b1 with
| false => false
| true => match b2 with
| false => false
| true => b3
end
end.
Example test_andb31: (andb3 true true true) = true.
Proof. simpl. reflexivity. Qed.
Example test_andb32: (andb3 false true true) = false.
Proof. simpl. reflexivity. Qed.
Example test_andb33: (andb3 true false true) = false.
Proof. simpl. reflexivity. Qed.
Example test_andb34: (andb3 true true false) = false.
Proof. simpl. reflexivity. Qed.
Module Playground1.
Inductive nat : Type :=
| O : nat
| S : nat -> nat.
Definition pred (n : nat) : nat :=
match n with
| O => O
| S n' => n'
end.
Definition minustwo (n : nat) : nat :=
match n with
| O => O
| S O => O
| S (S n') => n'
end.
Fixpoint evenb (n : nat) : bool :=
match n with
| O => true
| S O => false
| S (S n') => evenb n'
end.
Definition oddb (n : nat) : bool := negb (evenb n).
Example test_oddb1: (oddb (S O)) = true.
Proof. reflexivity. Qed.
Example test_oddb2: (oddb (S (S (S (S O))))) = false.
Proof. reflexivity. Qed.
Fixpoint plus (n : nat) (m : nat) : nat :=
match n with
| O => m
| S n' => S (plus n' m)
end.
Fixpoint mult (n m : nat) : nat :=
match n with
| O => O
| S n' => plus m (mult n' m)
end.
Fixpoint minus (n m : nat) : nat :=
match n, m with
| O, _ => n
| S n', O => S n'
| S n', S m' => minus n' m'
end.
Fixpoint exp (base power : nat) : nat :=
match power with
| O => S O
| S p => mult base (exp base p)
end.
Fixpoint factorial (n : nat) : nat :=
match n with
| O => S O
| S n' => mult n (factorial n')
end.
Example test_factorial1: (factorial (S (S (S O)))) = (S (S (S (S (S (S O)))))).
Proof. simpl. reflexivity. Qed.
Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.
Notation "x - y" := (minus x y) (at level 50, left associativity) : nat_scope.
Notation "x * y" := (mult x y) (at level 40, left associativity) : nat_scope.
Fixpoint beq_nat (n m : nat) : bool :=
match n with
| O => match m with
| O => true
| S m' => false
end
| S n' => match m with
| O => false
| S m' => beq_nat n' m'
end
end.
Fixpoint ble_nat (n m : nat) : bool :=
match n with
| O => true
| S n' =>
match m with
| O => false
| S m' => ble_nat n' m'
end
end.
Example test_ble_nat1: (ble_nat (S (S O)) (S (S O))) = true.
Proof. simpl. reflexivity. Qed.
Example test_ble_nat2: (ble_nat (S (S O)) (S (S (S (S O))))) = true.
Proof. simpl. reflexivity. Qed.
Example test_ble_nat3: (ble_nat (S (S (S (S O)))) (S (S O))) = false.
Proof. simpl. reflexivity. Qed.
Definition blt_nat (n m : nat) : bool :=
(andb (negb (beq_nat n m)) (ble_nat n m)).
Example test_blt_nat1: (blt_nat (S (S O)) (S (S O))) = false.
Proof. simpl. reflexivity. Qed.
Example test_blt_nat3: (blt_nat (S (S (S (S O)))) (S (S O))) = false.
Proof. simpl. reflexivity. Qed.
Example test_blt_nat2 : (blt_nat (S (S O)) (S (S (S (S O))))) = true.
Proof. simpl. reflexivity. Qed.
Theorem plus_O_n : forall n : nat, O + n = n.
Proof.
simpl. reflexivity. Qed.
Theorem plus_O_n' : forall n : nat, O + n = n.
Proof.
reflexivity. Qed.
Theorem plus_O_n'' : forall n : nat, O + n = n.
Proof.
intros n. reflexivity. Qed.
Theorem plus_1_1 : forall n : nat, (S O) + n = S n.
Proof.
intros n. reflexivity. Qed.
Theorem mult_0_1: forall n : nat, O * n = O.
Proof.
intros n. reflexivity. Qed.
Theorem plus_id_example : forall n m:nat,
n = m -> n + n = m + m.
Proof.
intros n m.
intros H.
rewrite -> H.
reflexivity. Qed.
Theorem plus_id_exercise : forall n m o: nat,
n = m -> m = o -> n + m = m + o.
Proof.
intros n m o.
intros H.
intros H'.
rewrite -> H.
rewrite <- H'.
reflexivity.
Qed.
Theorem mult_0_plus : forall n m : nat,
(O + n) * m = n * m.
Proof.
intros n m.
rewrite -> plus_O_n.
reflexivity. Qed.
Theorem mult_1_plus : forall n m: nat,
((S O) + n) * m = m + (n * m).
Proof.
intros n m.
rewrite -> plus_1_1.
reflexivity.
Qed.
Theorem mult_1 : forall n : nat,
n * (S O) = n.
Proof.
intros n.
induction n as [| n'].
reflexivity.
simpl.
rewrite -> IHn'.
reflexivity.
Qed.
Theorem plus_1_neq_0 : forall n : nat,
beq_nat (n + (S O)) O = false.
Proof.
intros n.
destruct n as [| n'].
reflexivity.
reflexivity.
Qed.
Theorem zero_nbeq_plus_1 : forall n : nat,
beq_nat O (n + (S O)) = false.
Proof.
intros n.
destruct n.
reflexivity.
reflexivity.
Qed.
Require String. Open Scope string_scope.
Ltac move_to_top x :=
match reverse goal with
| H : _ |- _ => try move x after H
end.
Tactic Notation "assert_eq" ident(x) constr(v) :=
let H := fresh in
assert (x = v) as H by reflexivity;
clear H.
Tactic Notation "Case_aux" ident(x) constr(name) :=
first [
set (x := name); move_to_top x
| assert_eq x name; move_to_top x
| fail 1 "because we are working on a different case" ].
Ltac Case name := Case_aux Case name.
Ltac SCase name := Case_aux SCase name.
Ltac SSCase name := Case_aux SSCase name.
Ltac SSSCase name := Case_aux SSSCase name.
Ltac SSSSCase name := Case_aux SSSSCase name.
Ltac SSSSSCase name := Case_aux SSSSSCase name.
Ltac SSSSSSCase name := Case_aux SSSSSSCase name.
Ltac SSSSSSSCase name := Case_aux SSSSSSSCase name.
Theorem andb_true_elim1 : forall b c : bool,
andb b c = true -> b = true.
Proof.
intros b c H.
destruct b.
Case "b = true".
reflexivity.
Case "b = false".
rewrite <- H. reflexivity. Qed.
Theorem plus_0_r : forall n : nat, n + O = n.
Proof.
intros n. induction n as [| n'].
Case "n = 0". reflexivity.
Case "n = S n'". simpl. rewrite -> IHn'. reflexivity. Qed.
Theorem minus_diag : forall n,
minus n n = O.
Proof.
intros n. induction n as [| n'].
Case "n = 0".
simpl. reflexivity.
Case "n = S n'".
simpl. rewrite -> IHn'. reflexivity. Qed.
Theorem mult_0_r : forall n:nat,
n * O = O.
Proof.
intros n. induction n as [| n'].
Case "n = 0".
reflexivity.
Case "n = S n'".
simpl. rewrite -> IHn'. reflexivity. Qed.
Theorem plus_n_Sm : forall n m : nat,
S (n + m) = n + (S m).
Proof.
intros n m. induction n as [| n'].
Case "n = 0".
reflexivity.
Case "n = S n'".
simpl. rewrite -> IHn'. reflexivity. Qed.
Theorem plus_assoc : forall n m p : nat,
n + (m + p) = (n + m) + p.
Proof.
intros n m p.
induction n as [| n'].
reflexivity.
simpl.
rewrite -> IHn'.
reflexivity. Qed.
Theorem plus_distr : forall n m: nat, S (n + m) = n + (S m).
Proof.
intros n m. induction n as [| n'].
Case "n = 0".
reflexivity.
Case "n = S n'".
simpl. rewrite -> IHn'. reflexivity. Qed.
Theorem mult_distr : forall n m: nat, n * ((S O) + m) = n * (S m).
Proof.
intros n m.
induction n as [| n'].
reflexivity.
reflexivity.
Qed.
Theorem plus_comm : forall n m : nat,
n + m = m + n.
Proof.
intros n m.
induction n as [| n'].
Case "n = 0".
simpl.
rewrite -> plus_0_r.
reflexivity.
Case "n = S n'".
simpl.
rewrite -> IHn'.
rewrite -> plus_distr.
reflexivity. Qed.
Fixpoint double (n:nat) :=
match n with
| O => O
| S n' => S (S (double n'))
end.
Lemma double_plus : forall n, double n = n + n.
Proof.
intros n. induction n as [| n'].
Case "n = 0".
reflexivity.
Case "n = S n'".
simpl. rewrite -> IHn'.
rewrite -> plus_distr. reflexivity.
Qed.
Theorem beq_nat_refl : forall n : nat,
true = beq_nat n n.
Proof.
intros n. induction n as [| n'].
Case "n = 0".
reflexivity.
Case "n = S n".
simpl. rewrite <- IHn'.
reflexivity. Qed.
Theorem plus_rearrange: forall n m p q : nat,
(n + m) + (p + q) = (m + n) + (p + q).
Proof.
intros n m p q.
assert(H: n + m = m + n).
Case "Proof by assertion".
rewrite -> plus_comm. reflexivity.
rewrite -> H. reflexivity. Qed.
Theorem plus_swap : forall n m p: nat,
n + (m + p) = m + (n + p).
Proof.
intros n m p.
rewrite -> plus_assoc.
assert(H: m + (n + p) = (m + n) + p).
rewrite -> plus_assoc.
reflexivity.
rewrite -> H.
assert(H2: m + n = n + m).
rewrite -> plus_comm.
reflexivity.
rewrite -> H2.
reflexivity.
Qed.
Theorem plus_swap' : forall n m p: nat,
n + (m + p) = m + (n + p).
Proof.
intros n m p.
rewrite -> plus_assoc.
assert(H: m + (n + p) = (m + n) + p).
rewrite -> plus_assoc.
reflexivity.
rewrite -> H.
replace (m + n) with (n + m).
rewrite -> plus_comm.
reflexivity.
rewrite -> plus_comm.
reflexivity.
Qed.
Theorem mult_1_distr: forall m n: nat,
n * ((S O) + m) = n * (S O) + n * m.
Proof.
intros n m.
rewrite -> mult_1.
rewrite -> plus_1_1.
simpl.
induction m as [|m'].
simpl.
reflexivity.
simpl.
rewrite -> plus_swap.
rewrite <- IHm'.
reflexivity.
Qed.
Theorem mult_comm: forall m n : nat,
m * n = n * m.
Proof.
intros m n.
induction n as [| n'].
Case "n = 0".
simpl.
rewrite -> mult_0_r.
reflexivity.
Case "n = S n'".
simpl.
rewrite <- mult_distr.
rewrite -> mult_1_distr.
rewrite -> mult_1.
rewrite -> IHn'.
reflexivity.
Qed.
Theorem evenb_next : forall n : nat,
evenb n = evenb (S (S n)).
Proof.
intros n.
Admitted.
Theorem negb_negb : forall n : bool,
n = negb (negb n).
Proof.
intros n.
destruct n.
reflexivity.
reflexivity.
Qed.
Theorem evenb_n_oddb_Sn : forall n : nat,
evenb n = negb (evenb (S n)).
Proof.
intros n.
induction n as [|n'].
reflexivity.
assert(H: evenb n' = evenb (S (S n'))).
reflexivity.
rewrite <- H.
rewrite -> IHn'.
rewrite <- negb_negb.
reflexivity.
Qed.
(*Fixpoint bad (n : nat) : bool :=
match n with
| O => true
| S O => bad (S n)
| S (S n') => bad n'
end.*)
Theorem ble_nat_refl : forall n:nat,
true = ble_nat n n.
Proof.
intros n.
induction n as [|n'].
Case "n = 0".
reflexivity.
Case "n = S n".
simpl.
rewrite <- IHn'.
reflexivity.
Qed.
Theorem zero_nbeq_S : forall n: nat,
beq_nat O (S n) = false.
Proof.
intros n.
reflexivity.
Qed.
Theorem andb_false_r : forall b : bool,
andb b false = false.
Proof.
intros b.
destruct b.
reflexivity.
reflexivity.
Qed.
Theorem plus_ble_compat_1 : forall n m p : nat,
ble_nat n m = true -> ble_nat (p + n) (p + m) = true.
Proof.
intros n m p.
intros H.
induction p.
Case "p = 0".
simpl.
rewrite -> H.
reflexivity.
Case "p = S p'".
simpl.
rewrite -> IHp.
reflexivity.
Qed.
Theorem S_nbeq_0 : forall n:nat,
beq_nat (S n) O = false.
Proof.
intros n.
reflexivity.
Qed.
Theorem mult_1_1 : forall n:nat, (S O) * n = n.
Proof.
intros n.
simpl.
rewrite -> plus_0_r.
reflexivity. Qed.
Theorem all3_spec : forall b c : bool,
orb (andb b c)
(orb (negb b)
(negb c))
= true.
Proof.
intros b c.
destruct b.
destruct c.
reflexivity.
reflexivity.
reflexivity.
Qed.
Lemma mult_plus_1 : forall n m : nat,
S(m + n) = m + (S n).
Proof.
intros n m.
induction m.
reflexivity.
simpl.
rewrite -> IHm.
reflexivity.
Qed.
Theorem mult_mult : forall n m : nat,
n * (S m) = n * m + n.
Proof.
intros n m.
induction n.
reflexivity.
simpl.
rewrite -> IHn.
rewrite -> plus_assoc.
rewrite -> mult_plus_1.
reflexivity.
Qed.
Theorem mult_plus_distr_r : forall n m p:nat,
(n + m) * p = (n * p) + (m * p).
Proof.
intros n m p.
induction p.
rewrite -> mult_0_r.
rewrite -> mult_0_r.
rewrite -> mult_0_r.
reflexivity.
rewrite -> mult_mult.
rewrite -> mult_mult.
rewrite -> mult_mult.
rewrite -> IHp.
assert(H1: ((n * p) + n) + (m * p + m) = (n * p) + (n + (m * p + m))).
rewrite <- plus_assoc.
reflexivity.
rewrite -> H1.
assert(H2: (n + (m * p + m)) = (m * p + (n + m))).
rewrite -> plus_swap.
reflexivity.
rewrite -> H2.
assert(H3: (n * p) + (m * p + (n + m)) = ((n * p ) + (m * p)) + (n + m)).
rewrite -> plus_assoc.
reflexivity.
rewrite -> H3.
reflexivity.
Qed.
Theorem mult_assoc : forall n m p : nat,
n * (m * p) = (n * m) * p.
Proof.
intros n m p.
induction n.
simpl.
reflexivity.
simpl.
rewrite -> mult_plus_distr_r.
rewrite -> IHn.
reflexivity.
Qed.
Inductive bin : Type :=
| BO : bin
| D : bin -> bin
| M : bin -> bin.
Fixpoint incbin (n : bin) : bin :=
match n with
| BO => M (BO)
| D n' => M n'
| M n' => D (incbin n')
end.
Fixpoint bin2un (n : bin) : nat :=
match n with
| BO => O
| D n' => double (bin2un n')
| M n' => S (double (bin2un n'))
end.
Theorem bin_comm : forall n : bin,
bin2un(incbin n) = S (bin2un n).
Proof.
intros n.
induction n.
reflexivity.
reflexivity.
simpl.
rewrite -> IHn.
reflexivity.
Qed.
End Playground1.