Files
linguist/samples/Coq/Permutation.v
2012-09-24 10:48:22 -05:00

633 lines
19 KiB
Coq
Executable File

(* Adapted in May 2006 by Jean-Marc Notin from initial contents by
Laurent Thery (Huffmann contribution, October 2003) *)
Require Import List Setoid Compare_dec Morphisms.
Import ListNotations. (* For notations [] and [a;b;c] *)
Set Implicit Arguments.
Section Permutation.
Variable A:Type.
Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []
| perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l')
| perm_swap x y l : Permutation (y::x::l) (x::y::l)
| perm_trans l l' l'' :
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
Local Hint Constructors Permutation.
(** Some facts about [Permutation] *)
Theorem Permutation_nil : forall (l : list A), Permutation [] l -> l = [].
Proof.
intros l HF.
remember (@nil A) as m in HF.
induction HF; discriminate || auto.
Qed.
Theorem Permutation_nil_cons : forall (l : list A) (x : A),
~ Permutation nil (x::l).
Proof.
intros l x HF.
apply Permutation_nil in HF; discriminate.
Qed.
(** Permutation over lists is a equivalence relation *)
Theorem Permutation_refl : forall l : list A, Permutation l l.
Proof.
induction l; constructor. exact IHl.
Qed.
Theorem Permutation_sym : forall l l' : list A,
Permutation l l' -> Permutation l' l.
Proof.
intros l l' Hperm; induction Hperm; auto.
apply perm_trans with (l':=l'); assumption.
Qed.
Theorem Permutation_trans : forall l l' l'' : list A,
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
Proof.
exact perm_trans.
Qed.
End Permutation.
Hint Resolve Permutation_refl perm_nil perm_skip.
(* These hints do not reduce the size of the problem to solve and they
must be used with care to avoid combinatoric explosions *)
Local Hint Resolve perm_swap perm_trans.
Local Hint Resolve Permutation_sym Permutation_trans.
(* This provides reflexivity, symmetry and transitivity and rewriting
on morphims to come *)
Instance Permutation_Equivalence A : Equivalence (@Permutation A) | 10 := {
Equivalence_Reflexive := @Permutation_refl A ;
Equivalence_Symmetric := @Permutation_sym A ;
Equivalence_Transitive := @Permutation_trans A }.
Instance Permutation_cons A :
Proper (Logic.eq ==> @Permutation A ==> @Permutation A) (@cons A) | 10.
Proof.
repeat intro; subst; auto using perm_skip.
Qed.
Section Permutation_properties.
Variable A:Type.
Implicit Types a b : A.
Implicit Types l m : list A.
(** Compatibility with others operations on lists *)
Theorem Permutation_in : forall (l l' : list A) (x : A),
Permutation l l' -> In x l -> In x l'.
Proof.
intros l l' x Hperm; induction Hperm; simpl; tauto.
Qed.
Global Instance Permutation_in' :
Proper (Logic.eq ==> @Permutation A ==> iff) (@In A) | 10.
Proof.
repeat red; intros; subst; eauto using Permutation_in.
Qed.
Lemma Permutation_app_tail : forall (l l' tl : list A),
Permutation l l' -> Permutation (l++tl) (l'++tl).
Proof.
intros l l' tl Hperm; induction Hperm as [|x l l'|x y l|l l' l'']; simpl; auto.
eapply Permutation_trans with (l':=l'++tl); trivial.
Qed.
Lemma Permutation_app_head : forall (l tl tl' : list A),
Permutation tl tl' -> Permutation (l++tl) (l++tl').
Proof.
intros l tl tl' Hperm; induction l;
[trivial | repeat rewrite <- app_comm_cons; constructor; assumption].
Qed.
Theorem Permutation_app : forall (l m l' m' : list A),
Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m').
Proof.
intros l m l' m' Hpermll' Hpermmm';
induction Hpermll' as [|x l l'|x y l|l l' l''];
repeat rewrite <- app_comm_cons; auto.
apply Permutation_trans with (l' := (x :: y :: l ++ m));
[idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial.
apply Permutation_trans with (l' := (l' ++ m')); try assumption.
apply Permutation_app_tail; assumption.
Qed.
Global Instance Permutation_app' :
Proper (@Permutation A ==> @Permutation A ==> @Permutation A) (@app A) | 10.
Proof.
repeat intro; now apply Permutation_app.
Qed.
Lemma Permutation_add_inside : forall a (l l' tl tl' : list A),
Permutation l l' -> Permutation tl tl' ->
Permutation (l ++ a :: tl) (l' ++ a :: tl').
Proof.
intros; apply Permutation_app; auto.
Qed.
Lemma Permutation_cons_append : forall (l : list A) x,
Permutation (x :: l) (l ++ x :: nil).
Proof. induction l; intros; auto. simpl. rewrite <- IHl; auto. Qed.
Local Hint Resolve Permutation_cons_append.
Theorem Permutation_app_comm : forall (l l' : list A),
Permutation (l ++ l') (l' ++ l).
Proof.
induction l as [|x l]; simpl; intro l'.
rewrite app_nil_r; trivial. rewrite IHl.
rewrite app_comm_cons, Permutation_cons_append.
now rewrite <- app_assoc.
Qed.
Local Hint Resolve Permutation_app_comm.
Theorem Permutation_cons_app : forall (l l1 l2:list A) a,
Permutation l (l1 ++ l2) -> Permutation (a :: l) (l1 ++ a :: l2).
Proof.
intros l l1 l2 a H. rewrite H.
rewrite app_comm_cons, Permutation_cons_append.
now rewrite <- app_assoc.
Qed.
Local Hint Resolve Permutation_cons_app.
Theorem Permutation_middle : forall (l1 l2:list A) a,
Permutation (a :: l1 ++ l2) (l1 ++ a :: l2).
Proof.
auto.
Qed.
Local Hint Resolve Permutation_middle.
Theorem Permutation_rev : forall (l : list A), Permutation l (rev l).
Proof.
induction l as [| x l]; simpl; trivial. now rewrite IHl at 1.
Qed.
Global Instance Permutation_rev' :
Proper (@Permutation A ==> @Permutation A) (@rev A) | 10.
Proof.
repeat intro; now rewrite <- 2 Permutation_rev.
Qed.
Theorem Permutation_length : forall (l l' : list A),
Permutation l l' -> length l = length l'.
Proof.
intros l l' Hperm; induction Hperm; simpl; auto. now transitivity (length l').
Qed.
Global Instance Permutation_length' :
Proper (@Permutation A ==> Logic.eq) (@length A) | 10.
Proof.
exact Permutation_length.
Qed.
Theorem Permutation_ind_bis :
forall P : list A -> list A -> Prop,
P [] [] ->
(forall x l l', Permutation l l' -> P l l' -> P (x :: l) (x :: l')) ->
(forall x y l l', Permutation l l' -> P l l' -> P (y :: x :: l) (x :: y :: l')) ->
(forall l l' l'', Permutation l l' -> P l l' -> Permutation l' l'' -> P l' l'' -> P l l'') ->
forall l l', Permutation l l' -> P l l'.
Proof.
intros P Hnil Hskip Hswap Htrans.
induction 1; auto.
apply Htrans with (x::y::l); auto.
apply Hswap; auto.
induction l; auto.
apply Hskip; auto.
apply Hskip; auto.
induction l; auto.
eauto.
Qed.
Ltac break_list l x l' H :=
destruct l as [|x l']; simpl in *;
injection H; intros; subst; clear H.
Theorem Permutation_nil_app_cons : forall (l l' : list A) (x : A),
~ Permutation nil (l++x::l').
Proof.
intros l l' x HF.
apply Permutation_nil in HF. destruct l; discriminate.
Qed.
Theorem Permutation_app_inv : forall (l1 l2 l3 l4:list A) a,
Permutation (l1++a::l2) (l3++a::l4) -> Permutation (l1++l2) (l3 ++ l4).
Proof.
intros l1 l2 l3 l4 a; revert l1 l2 l3 l4.
set (P l l' :=
forall l1 l2 l3 l4, l=l1++a::l2 -> l'=l3++a::l4 ->
Permutation (l1++l2) (l3++l4)).
cut (forall l l', Permutation l l' -> P l l').
intros H; intros; eapply H; eauto.
apply (Permutation_ind_bis P); unfold P; clear P.
- (* nil *)
intros; now destruct l1.
- (* skip *)
intros x l l' H IH; intros.
break_list l1 b l1' H0; break_list l3 c l3' H1.
auto.
now rewrite H.
now rewrite <- H.
now rewrite (IH _ _ _ _ eq_refl eq_refl).
- (* swap *)
intros x y l l' Hp IH; intros.
break_list l1 b l1' H; break_list l3 c l3' H0.
auto.
break_list l3' b l3'' H.
auto.
constructor. now rewrite Permutation_middle.
break_list l1' c l1'' H1.
auto.
constructor. now rewrite Permutation_middle.
break_list l3' d l3'' H; break_list l1' e l1'' H1.
auto.
rewrite perm_swap. constructor. now rewrite Permutation_middle.
rewrite perm_swap. constructor. now rewrite Permutation_middle.
now rewrite perm_swap, (IH _ _ _ _ eq_refl eq_refl).
- (*trans*)
intros.
destruct (In_split a l') as (l'1,(l'2,H6)).
rewrite <- H.
subst l.
apply in_or_app; right; red; auto.
apply perm_trans with (l'1++l'2).
apply (H0 _ _ _ _ H3 H6).
apply (H2 _ _ _ _ H6 H4).
Qed.
Theorem Permutation_cons_inv l l' a :
Permutation (a::l) (a::l') -> Permutation l l'.
Proof.
intro H; exact (Permutation_app_inv [] l [] l' a H).
Qed.
Theorem Permutation_cons_app_inv l l1 l2 a :
Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2).
Proof.
intro H; exact (Permutation_app_inv [] l l1 l2 a H).
Qed.
Theorem Permutation_app_inv_l : forall l l1 l2,
Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2.
Proof.
induction l; simpl; auto.
intros.
apply IHl.
apply Permutation_cons_inv with a; auto.
Qed.
Theorem Permutation_app_inv_r : forall l l1 l2,
Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2.
Proof.
induction l.
intros l1 l2; do 2 rewrite app_nil_r; auto.
intros.
apply IHl.
apply Permutation_app_inv with a; auto.
Qed.
Lemma Permutation_length_1_inv: forall a l, Permutation [a] l -> l = [a].
Proof.
intros a l H; remember [a] as m in H.
induction H; try (injection Heqm as -> ->; clear Heqm);
discriminate || auto.
apply Permutation_nil in H as ->; trivial.
Qed.
Lemma Permutation_length_1: forall a b, Permutation [a] [b] -> a = b.
Proof.
intros a b H.
apply Permutation_length_1_inv in H; injection H as ->; trivial.
Qed.
Lemma Permutation_length_2_inv :
forall a1 a2 l, Permutation [a1;a2] l -> l = [a1;a2] \/ l = [a2;a1].
Proof.
intros a1 a2 l H; remember [a1;a2] as m in H.
revert a1 a2 Heqm.
induction H; intros; try (injection Heqm; intros; subst; clear Heqm);
discriminate || (try tauto).
apply Permutation_length_1_inv in H as ->; left; auto.
apply IHPermutation1 in Heqm as [H1|H1]; apply IHPermutation2 in H1 as ();
auto.
Qed.
Lemma Permutation_length_2 :
forall a1 a2 b1 b2, Permutation [a1;a2] [b1;b2] ->
a1 = b1 /\ a2 = b2 \/ a1 = b2 /\ a2 = b1.
Proof.
intros a1 b1 a2 b2 H.
apply Permutation_length_2_inv in H as [H|H]; injection H as -> ->; auto.
Qed.
Let in_middle l l1 l2 (a:A) : l = l1 ++ a :: l2 ->
forall x, In x l <-> a = x \/ In x (l1++l2).
Proof.
intros; subst; rewrite !in_app_iff; simpl. tauto.
Qed.
Lemma NoDup_cardinal_incl (l l' : list A) : NoDup l -> NoDup l' ->
length l = length l' -> incl l l' -> incl l' l.
Proof.
intros N. revert l'. induction N as [|a l Hal Hl IH].
- destruct l'; now auto.
- intros l' Hl' E H x Hx.
assert (Ha : In a l') by (apply H; simpl; auto).
destruct (in_split _ _ Ha) as (l1 & l2 & H12). clear Ha.
rewrite in_middle in Hx; eauto.
destruct Hx as [Hx|Hx]; [left|right]; auto.
apply (IH (l1++l2)); auto.
* apply NoDup_remove_1 with a; rewrite <- H12; auto.
* apply eq_add_S.
simpl in E; rewrite E, H12, !app_length; simpl; auto with arith.
* intros y Hy. assert (Hy' : In y l') by (apply H; simpl; auto).
rewrite in_middle in Hy'; eauto.
destruct Hy'; auto. subst y; intuition.
Qed.
Lemma NoDup_Permutation l l' : NoDup l -> NoDup l' ->
(forall x:A, In x l <-> In x l') -> Permutation l l'.
Proof.
intros N. revert l'. induction N as [|a l Hal Hl IH].
- destruct l'; simpl; auto.
intros Hl' H. exfalso. rewrite (H a); auto.
- intros l' Hl' H.
assert (Ha : In a l') by (apply H; simpl; auto).
destruct (In_split _ _ Ha) as (l1 & l2 & H12).
rewrite H12.
apply Permutation_cons_app.
apply IH; auto.
* apply NoDup_remove_1 with a; rewrite <- H12; auto.
* intro x. split; intros Hx.
+ assert (Hx' : In x l') by (apply H; simpl; auto).
rewrite in_middle in Hx'; eauto.
destruct Hx'; auto. subst; intuition.
+ assert (Hx' : In x l') by (rewrite (in_middle l1 l2 a); eauto).
rewrite <- H in Hx'. destruct Hx'; auto.
subst. destruct (NoDup_remove_2 _ _ _ Hl' Hx).
Qed.
Lemma NoDup_Permutation_bis l l' : NoDup l -> NoDup l' ->
length l = length l' -> incl l l' -> Permutation l l'.
Proof.
intros. apply NoDup_Permutation; auto.
split; auto. apply NoDup_cardinal_incl; auto.
Qed.
Lemma Permutation_NoDup l l' : Permutation l l' -> NoDup l -> NoDup l'.
Proof.
induction 1; auto.
* inversion_clear 1; constructor; eauto using Permutation_in.
* inversion_clear 1 as [|? ? H1 H2]. inversion_clear H2; simpl in *.
constructor. simpl; intuition. constructor; intuition.
Qed.
Global Instance Permutation_NoDup' :
Proper (@Permutation A ==> iff) (@NoDup A) | 10.
Proof.
repeat red; eauto using Permutation_NoDup.
Qed.
End Permutation_properties.
Section Permutation_map.
Variable A B : Type.
Variable f : A -> B.
Lemma Permutation_map l l' :
Permutation l l' -> Permutation (map f l) (map f l').
Proof.
induction 1; simpl; eauto.
Qed.
Global Instance Permutation_map' :
Proper (@Permutation A ==> @Permutation B) (map f) | 10.
Proof.
exact Permutation_map.
Qed.
End Permutation_map.
Section Injection.
Definition injective {A B} (f : A->B) :=
forall x y, f x = f y -> x = y.
Lemma injective_map_NoDup {A B} (f:A->B) (l:list A) :
injective f -> NoDup l -> NoDup (map f l).
Proof.
intros Hf. induction 1 as [|x l Hx Hl IH]; simpl; constructor; trivial.
rewrite in_map_iff. intros (y & Hy & Hy'). apply Hf in Hy. now subst.
Qed.
Lemma injective_bounded_surjective n f :
injective f ->
(forall x, x < n -> f x < n) ->
(forall y, y < n -> exists x, x < n /\ f x = y).
Proof.
intros Hf H.
set (l := seq 0 n).
assert (P : incl (map f l) l).
{ intros x. rewrite in_map_iff. intros (y & <- & Hy').
unfold l in *. rewrite in_seq in *. simpl in *.
destruct Hy' as (_,Hy'). auto with arith. }
assert (P' : incl l (map f l)).
{ unfold l.
apply NoDup_cardinal_incl; auto using injective_map_NoDup, seq_NoDup.
now rewrite map_length. }
intros x Hx.
assert (Hx' : In x l) by (unfold l; rewrite in_seq; auto with arith).
apply P' in Hx'.
rewrite in_map_iff in Hx'. destruct Hx' as (y & Hy & Hy').
exists y; split; auto. unfold l in *; rewrite in_seq in Hy'.
destruct Hy'; auto with arith.
Qed.
Lemma nat_bijection_Permutation n f :
injective f -> (forall x, x < n -> f x < n) ->
let l := seq 0 n in Permutation (map f l) l.
Proof.
intros Hf BD.
apply NoDup_Permutation_bis; auto using injective_map_NoDup, seq_NoDup.
* now rewrite map_length.
* intros x. rewrite in_map_iff. intros (y & <- & Hy').
rewrite in_seq in *. simpl in *.
destruct Hy' as (_,Hy'). auto with arith.
Qed.
End Injection.
Section Permutation_alt.
Variable A:Type.
Implicit Type a : A.
Implicit Type l : list A.
(** Alternative characterization of permutation
via [nth_error] and [nth] *)
Let adapt f n :=
let m := f (S n) in if le_lt_dec m (f 0) then m else pred m.
Let adapt_injective f : injective f -> injective (adapt f).
Proof.
unfold adapt. intros Hf x y EQ.
destruct le_lt_dec as [LE|LT]; destruct le_lt_dec as [LE'|LT'].
- now apply eq_add_S, Hf.
- apply Lt.le_lt_or_eq in LE.
destruct LE as [LT|EQ']; [|now apply Hf in EQ'].
unfold lt in LT. rewrite EQ in LT.
rewrite <- (Lt.S_pred _ _ LT') in LT.
elim (Lt.lt_not_le _ _ LT' LT).
- apply Lt.le_lt_or_eq in LE'.
destruct LE' as [LT'|EQ']; [|now apply Hf in EQ'].
unfold lt in LT'. rewrite <- EQ in LT'.
rewrite <- (Lt.S_pred _ _ LT) in LT'.
elim (Lt.lt_not_le _ _ LT LT').
- apply eq_add_S, Hf.
now rewrite (Lt.S_pred _ _ LT), (Lt.S_pred _ _ LT'), EQ.
Qed.
Let adapt_ok a l1 l2 f : injective f -> length l1 = f 0 ->
forall n, nth_error (l1++a::l2) (f (S n)) = nth_error (l1++l2) (adapt f n).
Proof.
unfold adapt. intros Hf E n.
destruct le_lt_dec as [LE|LT].
- apply Lt.le_lt_or_eq in LE.
destruct LE as [LT|EQ]; [|now apply Hf in EQ].
rewrite <- E in LT.
rewrite 2 nth_error_app1; auto.
- rewrite (Lt.S_pred _ _ LT) at 1.
rewrite <- E, (Lt.S_pred _ _ LT) in LT.
rewrite 2 nth_error_app2; auto with arith.
rewrite <- Minus.minus_Sn_m; auto with arith.
Qed.
Lemma Permutation_nth_error l l' :
Permutation l l' <->
(length l = length l' /\
exists f:nat->nat,
injective f /\ forall n, nth_error l' n = nth_error l (f n)).
Proof.
split.
{ intros P.
split; [now apply Permutation_length|].
induction P.
- exists (fun n => n).
split; try red; auto.
- destruct IHP as (f & Hf & Hf').
exists (fun n => match n with O => O | S n => S (f n) end).
split; try red.
* intros [|y] [|z]; simpl; now auto.
* intros [|n]; simpl; auto.
- exists (fun n => match n with 0 => 1 | 1 => 0 | n => n end).
split; try red.
* intros [|[|z]] [|[|t]]; simpl; now auto.
* intros [|[|n]]; simpl; auto.
- destruct IHP1 as (f & Hf & Hf').
destruct IHP2 as (g & Hg & Hg').
exists (fun n => f (g n)).
split; try red.
* auto.
* intros n. rewrite <- Hf'; auto. }
{ revert l. induction l'.
- intros [|l] (E & _); now auto.
- intros l (E & f & Hf & Hf').
simpl in E.
assert (Ha : nth_error l (f 0) = Some a)
by (symmetry; apply (Hf' 0)).
destruct (nth_error_split l (f 0) Ha) as (l1 & l2 & L12 & L1).
rewrite L12. rewrite <- Permutation_middle. constructor.
apply IHl'; split; [|exists (adapt f); split].
* revert E. rewrite L12, !app_length. simpl.
rewrite <- plus_n_Sm. now injection 1.
* now apply adapt_injective.
* intro n. rewrite <- (adapt_ok a), <- L12; auto.
apply (Hf' (S n)). }
Qed.
Lemma Permutation_nth_error_bis l l' :
Permutation l l' <->
exists f:nat->nat,
injective f /\
(forall n, n < length l -> f n < length l) /\
(forall n, nth_error l' n = nth_error l (f n)).
Proof.
rewrite Permutation_nth_error; split.
- intros (E & f & Hf & Hf').
exists f. do 2 (split; trivial).
intros n Hn.
destruct (Lt.le_or_lt (length l) (f n)) as [LE|LT]; trivial.
rewrite <- nth_error_None, <- Hf', nth_error_None, <- E in LE.
elim (Lt.lt_not_le _ _ Hn LE).
- intros (f & Hf & Hf2 & Hf3); split; [|exists f; auto].
assert (H : length l' <= length l') by auto with arith.
rewrite <- nth_error_None, Hf3, nth_error_None in H.
destruct (Lt.le_or_lt (length l) (length l')) as [LE|LT];
[|apply Hf2 in LT; elim (Lt.lt_not_le _ _ LT H)].
apply Lt.le_lt_or_eq in LE. destruct LE as [LT|EQ]; trivial.
rewrite <- nth_error_Some, Hf3, nth_error_Some in LT.
destruct (injective_bounded_surjective Hf Hf2 LT) as (y & Hy & Hy').
apply Hf in Hy'. subst y. elim (Lt.lt_irrefl _ Hy).
Qed.
Lemma Permutation_nth l l' d :
Permutation l l' <->
(let n := length l in
length l' = n /\
exists f:nat->nat,
(forall x, x < n -> f x < n) /\
(forall x y, x < n -> y < n -> f x = f y -> x = y) /\
(forall x, x < n -> nth x l' d = nth (f x) l d)).
Proof.
split.
- intros H.
assert (E := Permutation_length H).
split; auto.
apply Permutation_nth_error_bis in H.
destruct H as (f & Hf & Hf2 & Hf3).
exists f. split; [|split]; auto.
intros n Hn. rewrite <- 2 nth_default_eq. unfold nth_default.
now rewrite Hf3.
- intros (E & f & Hf1 & Hf2 & Hf3).
rewrite Permutation_nth_error.
split; auto.
exists (fun n => if le_lt_dec (length l) n then n else f n).
split.
* intros x y.
destruct le_lt_dec as [LE|LT];
destruct le_lt_dec as [LE'|LT']; auto.
+ apply Hf1 in LT'. intros ->.
elim (Lt.lt_irrefl (f y)). eapply Lt.lt_le_trans; eauto.
+ apply Hf1 in LT. intros <-.
elim (Lt.lt_irrefl (f x)). eapply Lt.lt_le_trans; eauto.
* intros n.
destruct le_lt_dec as [LE|LT].
+ assert (LE' : length l' <= n) by (now rewrite E).
rewrite <- nth_error_None in LE, LE'. congruence.
+ assert (LT' : n < length l') by (now rewrite E).
specialize (Hf3 n LT). rewrite <- 2 nth_default_eq in Hf3.
unfold nth_default in Hf3.
apply Hf1 in LT.
rewrite <- nth_error_Some in LT, LT'.
do 2 destruct nth_error; congruence.
Qed.
End Permutation_alt.
(* begin hide *)
Notation Permutation_app_swap := Permutation_app_comm (only parsing).
(* end hide *)