mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	All of these code samples currently are mis-identified in my repositories. I'm donating them to the cause.
		
			
				
	
	
		
			149 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Matlab
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Matlab
		
	
	
	
	
	
| tic
 | |
| clear all
 | |
| %% Choice of the mass parameter
 | |
| mu=0.1;
 | |
| 
 | |
| %% Computation of Lagrangian Points
 | |
| [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5] = Lagr(mu);
 | |
| 
 | |
| %% Computation of initial total energy
 | |
| E_L1=-Omega(xl1,yl1,mu);
 | |
| E=E_L1+0.03715; % Offset as in figure 2.2 "LCS in the ER3BP"
 | |
| 
 | |
| %% Initial conditions range
 | |
| x_0_min=-0.8;
 | |
| x_0_max=-0.2;
 | |
| 
 | |
| vx_0_min=-2;
 | |
| vx_0_max=2;
 | |
| 
 | |
| y_0=0;
 | |
| 
 | |
| % Elements for grid definition
 | |
| n=200;
 | |
| 
 | |
| % Dimensionless integrating time
 | |
| T=2;
 | |
| 
 | |
| % Grid initializing
 | |
| [x_0,vx_0]=ndgrid(linspace(x_0_min,x_0_max,n),linspace(vx_0_min,vx_0_max,n));
 | |
| vy_0=sqrt(2*E+2*Omega(x_0,y_0,mu)-vx_0.^2);
 | |
| 
 | |
| % Kinetic energy computation
 | |
| E_cin=E+Omega(x_0,y_0,mu);
 | |
| 
 | |
| %% Transforming into Hamiltonian variables
 | |
| px_0=vx_0-y_0;
 | |
| py_0=vy_0+x_0;
 | |
| 
 | |
| % Inizializing
 | |
| x_T=zeros(n,n);
 | |
| y_T=zeros(n,n);
 | |
| px_T=zeros(n,n);
 | |
| py_T=zeros(n,n);
 | |
| filtro=ones(n,n);
 | |
| E_T=zeros(n,n);
 | |
| a=zeros(n,n); % matrix of numbers of integration steps for each integration
 | |
| np=0; % number of integrated points
 | |
| 
 | |
| fprintf(' con n = %i\n',n)
 | |
| 
 | |
| %% Energy tolerance setting
 | |
| energy_tol=inf;
 | |
| 
 | |
| %% Computation of the Jacobian of the system
 | |
| options=odeset('Jacobian',@cr3bp_jac);
 | |
| 
 | |
| %% Parallel integration of equations of motion
 | |
| parfor i=1:n
 | |
| 	for j=1:n
 | |
| 		if E_cin(i,j)>0 && isreal(vy_0(i,j)) % Check for real velocity and positive Kinetic energy
 | |
| 			[t,Y]=ode45(@fH,[0 T],[x_0(i,j); y_0; px_0(i,j); py_0(i,j)],options);
 | |
|             % Try to obtain the name of the solver for a following use
 | |
| %  			sol=ode45(@f,[0 T],[x_0(i,j); y_0; vx_0(i,j); vy_0(i,j)],options);
 | |
| % 			Y=sol.y';
 | |
| % 			solver=sol.solver;
 | |
| 			a(i,j)=length(Y);
 | |
|             %Saving solutions
 | |
| 			x_T(i,j)=Y(a(i,j),1); 
 | |
| 			px_T(i,j)=Y(a(i,j),3);
 | |
| 			y_T(i,j)=Y(a(i,j),2);
 | |
| 			py_T(i,j)=Y(a(i,j),4);
 | |
| 			%Computation of final total energy and difference with
 | |
| 			%initial one
 | |
| 			E_T(i,j)=EnergyH(x_T(i,j),y_T(i,j),px_T(i,j),py_T(i,j),mu);
 | |
| 			delta_E=abs(E_T(i,j)-E);
 | |
| 			if  delta_E > energy_tol; %Check of total energy conservation
 | |
| 				fprintf(' Ouch! Wrong Integration: i,j=(%i,%i)\n E_T=%.2f \n delta_E=%.2f\n\n',i,j,E_T(i,j),delta_E);
 | |
| 				filtro(i,j)=2; %Saving position of the point
 | |
|             end
 | |
| 			np=np+1;
 | |
|         else
 | |
| 			filtro(i,j)=0; % 1=interesting point; 0=non-sense point; 2= bad integration point		
 | |
| 		end
 | |
| 	end
 | |
| end
 | |
| 
 | |
| t_integrazione=toc;
 | |
| fprintf('  n = %i\n',n)
 | |
| fprintf(' energy_tol = %.2f\n',energy_tol)
 | |
| fprintf('total	\t%i\n',n^2)
 | |
| fprintf('nunber	\t%i\n',np)
 | |
| fprintf('time to integrate	\t%.2f s\n',t_integr)
 | |
| 
 | |
| %% Back to Lagrangian variables
 | |
| vx_T=px_T+y_T;
 | |
| vy_T=py_T-x_T;
 | |
| %% FTLE Computation
 | |
| fprintf('adesso calcolo ftle\n')
 | |
| tic
 | |
| dphi=zeros(2,2);
 | |
| ftle=zeros(n-2,n-2);
 | |
| 
 | |
| for i=2:n-1
 | |
| 	for j=2:n-1
 | |
| 		if filtro(i,j) && ... % Check for interesting point
 | |
| 				filtro(i,j-1) && ...
 | |
| 				filtro(i,j+1) && ...
 | |
| 				filtro(i-1,j) && ...
 | |
| 				filtro(i+1,j)
 | |
| 			
 | |
| 			dphi(1,1)=(x_T(i-1,j)-x_T(i+1,j))/(x_0(i-1,j)-x_0(i+1,j));
 | |
| 			
 | |
| 			dphi(1,2)=(x_T(i,j-1)-x_T(i,j+1))/(vx_0(i,j-1)-vx_0(i,j+1));
 | |
| 			
 | |
| 			dphi(2,1)=(vx_T(i-1,j)-vx_T(i+1,j))/(x_0(i-1,j)-x_0(i+1,j));
 | |
| 			
 | |
| 			dphi(2,2)=(vx_T(i,j-1)-vx_T(i,j+1))/(vx_0(i,j-1)-vx_0(i,j+1));
 | |
|             
 | |
| 			if filtro(i,j)==2 % Manual setting to visualize bad integrated points 
 | |
| 				ftle(i-1,j-1)=-Inf;
 | |
| 			else
 | |
| 				ftle(i-1,j-1)=1/(2*T)*log(max(abs(eig(dphi'*dphi))));
 | |
| 			end
 | |
| 		end
 | |
| 	end
 | |
| end
 | |
| 
 | |
| %% Plotting results
 | |
| % figure
 | |
| % plot(t,Y)
 | |
| % figure
 | |
| % plot(Y(:,1),Y(:,2))
 | |
| % figure
 | |
| 
 | |
| xx=linspace(x_0_min,x_0_max,n);
 | |
| vvx=linspace(vx_0_min,vx_0_max,n);
 | |
| [x,vx]=ndgrid(xx(2:n-1),vvx(2:n-1));
 | |
| figure
 | |
| pcolor(x,vx,ftle)
 | |
| shading flat
 | |
| 
 | |
| t_ftle=toc;
 | |
| fprintf('tempo per integrare      \t%.2f s\n',t_integrazione)
 | |
| fprintf('tempo per calcolare ftle \t%.2f s\n',t_ftle)
 | |
| 
 | |
| % save(['var_' num2str(n) '_' num2str(clock(4)])
 | |
| 
 | |
| nome=['var_xvx_', 'ode00', '_n',num2str(n),'_e',num2str(energy_tol),'_H'];
 | |
| save(nome) |