mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	All of these code samples currently are mis-identified in my repositories. I'm donating them to the cause.
		
			
				
	
	
		
			58 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Matlab
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Matlab
		
	
	
	
	
	
| data = load_data('jason_adapt.mat');
 | |
| 
 | |
| t0 = 0;
 | |
| t1 = 30;
 | |
| t2 = 60;
 | |
| t3 = 90;
 | |
| 
 | |
| dataPlantOne = data(1:t1 / data.Ts);
 | |
| dataAdapting = data(t1 / data.Ts:t2 / data.Ts);
 | |
| dataPlantTwo = data(t2 / data.Ts:end);
 | |
| 
 | |
| % k1, k2, k3, k4, tau, zetanm, wnm, zetafs, wfs
 | |
| 
 | |
| % ron's guess
 | |
| guessPlantOne = [4.85, 1.79, 20, 20, 0.2, 0.707, 10, 0.707, 65];
 | |
| % best solution from ron's guess
 | |
| %guessPlantOne = [4.1129, 2.1327, 52.3747, 48.6997, 0.2, 0.707, 10, 0.707, 65];
 | |
| resultPlantOne = find_structural_gains(dataPlantOne, guessPlantOne, 1);
 | |
| [yh, fit, x0] = compare(dataPlantOne, resultPlantOne.fit);
 | |
| display(sprintf('The self validation VAF is %f.', fit(1, 1, 1)))
 | |
| 
 | |
| % ron's guess
 | |
| guessPlantTwo = [3.36, 9.49, 20, 0, 0.2, 0.707, 10, 0.707, 65];
 | |
| % best solution from ron's guess
 | |
| %guessPlantTwo = [2.6686, 7.0431, 14.4623, 3.1532, 0.2, 0.707, 10, 0.707, 65];
 | |
| resultPlantTwo = find_structural_gains(dataPlantTwo, guessPlantTwo, 5);
 | |
| [yh, fit, x0] = compare(dataPlantTwo, resultPlantTwo.fit);
 | |
| display(sprintf('The self validation VAF is %f.', fit(1, 1, 1)))
 | |
| 
 | |
| % compute the slope and offset for each gain for initial guesses
 | |
| kP1 = resultPlantOne.fit.par(1:4);
 | |
| kP2 = resultPlantTwo.fit.par(1:4);
 | |
| gainSlopeOffset = [t1 * eye(4), eye(4); t2 * eye(4), eye(4)] \ [kP1; kP2];
 | |
| 
 | |
| aux.pars = guessPlantOne; % this only uses tau through wfs
 | |
| aux.timeDelay = true;
 | |
| aux.plantFirst = 1; % 1 / s
 | |
| aux.plantSecond = 5; % 5 / (s + 10)
 | |
| % compute the slope and offset of the plant for t1 < t < t2
 | |
| plantOneSlopeOffset = [t1, 1; t2, 1] \ [1; 0];
 | |
| plantTwoSlopeOffset = [t1, 1; t2, 1] \ [0; 1];
 | |
| aux.m = [plantOneSlopeOffset(1); plantTwoSlopeOffset(1)];
 | |
| aux.b = [plantOneSlopeOffset(2); plantTwoSlopeOffset(2)];
 | |
| 
 | |
| %[dx, y] = adapting_structural_model(45, ones(8, 1), 10, gainSlopeOffset, {aux});
 | |
| 
 | |
| % NOTE: 'FileArgument' has to be a cell array, the is why aux is in
 | |
| % brackets. Also, if you pass the parameters in as a vector here, as I have,
 | |
| % they get mapped to a structure and your ode file/function must accept each
 | |
| % parameter as individual arguments.
 | |
| mod = idnlgrey('adapting_structural_model', [1, 1, 8], gainSlopeOffset, ...
 | |
|     zeros(8, 1), 0, 'FileArgument', {aux}, 'InputName', 'thetac', ...
 | |
|     'OutputName', 'theta');
 | |
| 
 | |
| fit = pem(dataAdapting, mod);
 | |
| 
 | |
| compare(dataAdapting, fit);
 |