mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 17:50:22 +00:00
All of these code samples currently are mis-identified in my repositories. I'm donating them to the cause.
156 lines
3.0 KiB
Matlab
156 lines
3.0 KiB
Matlab
tic
|
|
clear
|
|
%% Range definition
|
|
n=200;
|
|
|
|
mu=0.1;
|
|
[xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5]=Lagr(mu);
|
|
C_L1=2*Omega(xl1,yl1,mu);
|
|
E_0=-C_L1/2+0.03715;
|
|
Y_0=0;
|
|
|
|
nx=n;
|
|
x_0_min=-0.8;
|
|
x_0_max=-0.15;
|
|
x_0=linspace(x_0_min, x_0_max, nx);
|
|
dx=(x_0_max-x_0_min)/(nx-1);
|
|
|
|
nvx=n;
|
|
vx_0_min=-2;
|
|
vx_0_max=2;
|
|
vx_0=linspace(vx_0_min, vx_0_max, nvx);
|
|
dvx=(vx_0_max-vx_0_min)/(nvx-1);
|
|
|
|
ny=3;
|
|
dy=(dx+dvx)/2;
|
|
y_0=[Y_0-dy Y_0 Y_0+dy];
|
|
|
|
|
|
|
|
ne=3;
|
|
de=dy;
|
|
e_0=[E_0-de E_0 E_0+de];
|
|
|
|
%% Definition of arrays of initial conditions
|
|
|
|
%In this approach, only useful pints are stored and integrated
|
|
|
|
m=1;
|
|
% x=zeros(1,nx*ny*nvx*ne);
|
|
% y=zeros(1,nx*ny*nvx*ne);
|
|
% vx=zeros(1,nx*ny*nvx*ne);
|
|
% e=zeros(1,nx*ny*nvx*ne);
|
|
% vy=zeros(1,nx*ny*nvx*ne);
|
|
filter=zeros(nx,3,nvx,3);
|
|
|
|
for i=1:nx
|
|
for j=1:ny
|
|
for k=1:nvx
|
|
for l=1:ne
|
|
v_y=-sqrt(2*Omega(x_0(i),y_0(j),mu)+2*e_0(l)-vx_0(k)^2);
|
|
if ~((j~=2) && (l~=2)) && isreal(v_y)
|
|
x(m)=x_0(i);
|
|
y(m)=y_0(j);
|
|
vx(m)=vx_0(k);
|
|
e(m)=e_0(l);
|
|
vy(m)=v_y;
|
|
filter(i,j,k,l)=1;
|
|
m=m+1;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
%% Selection of useful points
|
|
|
|
%% Data transfer to GPU
|
|
x_gpu=gpuArray(x);
|
|
y_gpu=gpuArray(y);
|
|
vx_gpu=gpuArray(vx);
|
|
vy_gpu=gpuArray(vy);
|
|
|
|
%% Integration on GPU
|
|
N=1;
|
|
t0=0;
|
|
|
|
[x_f,y_f,vx_f,vy_f]=arrayfun(@RKF45_FILE_gpu,t0,N,x_gpu,y_gpu,vx_gpu,vy_gpu,mu);
|
|
|
|
%% Data back to CPU and GPU memory cleaning
|
|
clear x_gpu y_gpu vx_gpu vy_gpu
|
|
x_T=gather(x_f);
|
|
clear x_f
|
|
y_T=gather(y_f);
|
|
clear y_f
|
|
vx_T=gather(vx_f);
|
|
clear vx_f
|
|
vy_T=gather(vy_f);
|
|
clear vy_f
|
|
|
|
%% Construction of matrix for FTLE computation
|
|
|
|
X_T=zeros(nx,ny,nvx,ne);
|
|
Y_T=zeros(nx,ny,nvx,ne);
|
|
VX_T=zeros(nx,ny,nvx,ne);
|
|
VY_T=zeros(nx,ny,nvx,ne);
|
|
E_T=zeros(nx,ny,nvx,ne);
|
|
m=1;
|
|
for i=1:nx
|
|
for j=1:ny
|
|
for k=1:nvx
|
|
for l=1:ne
|
|
if filter(i,j,k,l)==1
|
|
X_T(i,j,k,l)=x_T(m);
|
|
Y_T(i,j,k,l)=y_T(m);
|
|
VX_T(i,j,k,l)=vx_T(m);
|
|
VY_T(i,j,k,l)=vy_T(m);
|
|
E_T(i,j,k,l)=0.5*(VX_T(i,j,k,l)^2+VY_T(i,j,k,l)^2)-Omega(X_T(i,j,k,l),Y_T(i,j,k,l),mu);
|
|
m=m+1;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
%% Compute filter for FTLE
|
|
filter_ftle=filter;
|
|
for i=2:(nx-1)
|
|
for j=2:(ny-1)
|
|
for k=2:(nvx-1)
|
|
for l=2:(ne-1)
|
|
if filter(i,j,k,l)==0 || filter (i,j,k,l)==3
|
|
filter_ftle(i,j,k,l)=0;
|
|
|
|
filter_ftle(i+1,j,k,l)=0;
|
|
filter_ftle(i-1,j,k,l)=0;
|
|
|
|
filter_ftle(i,j+1,k,l)=0;
|
|
filter_ftle(i,j-1,k,l)=0;
|
|
|
|
filter_ftle(i,j,k+1,l)=0;
|
|
filter_ftle(i,j,k-1,l)=0;
|
|
|
|
filter_ftle(i,j,k,l+1)=0;
|
|
filter_ftle(i,j,k,l-1)=0;
|
|
end
|
|
end
|
|
|
|
end
|
|
end
|
|
end
|
|
%% FTLE computation
|
|
|
|
[ftle, dphi]=Compute_FILE_gpu( X_T, Y_T, VX_T, E_T, dx, dy, dvx, de, N, filter_ftle);
|
|
|
|
%% Plot results
|
|
figure
|
|
FTLE=squeeze(ftle(:,2,:,2));
|
|
FTLE(1,:)=[];
|
|
% FTLE(2,:)=[];
|
|
FTLE(:,1)=[];
|
|
% FTLE(:,2)=[];
|
|
x_0(1)=[];
|
|
vx_0(1)=[];
|
|
pcolor(x_0, vx_0, FTLE')
|
|
shading flat
|
|
toc |