mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			383 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			383 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2009-2012 The Bitcoin developers
 | |
| // Distributed under the MIT/X11 software license, see the accompanying
 | |
| // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 | |
| 
 | |
| #include <map>
 | |
| 
 | |
| #include <openssl/ecdsa.h>
 | |
| #include <openssl/obj_mac.h>
 | |
| 
 | |
| #include "key.h"
 | |
| 
 | |
| // Generate a private key from just the secret parameter
 | |
| int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
 | |
| {
 | |
|     int ok = 0;
 | |
|     BN_CTX *ctx = NULL;
 | |
|     EC_POINT *pub_key = NULL;
 | |
| 
 | |
|     if (!eckey) return 0;
 | |
| 
 | |
|     const EC_GROUP *group = EC_KEY_get0_group(eckey);
 | |
| 
 | |
|     if ((ctx = BN_CTX_new()) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     pub_key = EC_POINT_new(group);
 | |
| 
 | |
|     if (pub_key == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     EC_KEY_set_private_key(eckey,priv_key);
 | |
|     EC_KEY_set_public_key(eckey,pub_key);
 | |
| 
 | |
|     ok = 1;
 | |
| 
 | |
| err:
 | |
| 
 | |
|     if (pub_key)
 | |
|         EC_POINT_free(pub_key);
 | |
|     if (ctx != NULL)
 | |
|         BN_CTX_free(ctx);
 | |
| 
 | |
|     return(ok);
 | |
| }
 | |
| 
 | |
| // Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
 | |
| // recid selects which key is recovered
 | |
| // if check is nonzero, additional checks are performed
 | |
| int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
 | |
| {
 | |
|     if (!eckey) return 0;
 | |
| 
 | |
|     int ret = 0;
 | |
|     BN_CTX *ctx = NULL;
 | |
| 
 | |
|     BIGNUM *x = NULL;
 | |
|     BIGNUM *e = NULL;
 | |
|     BIGNUM *order = NULL;
 | |
|     BIGNUM *sor = NULL;
 | |
|     BIGNUM *eor = NULL;
 | |
|     BIGNUM *field = NULL;
 | |
|     EC_POINT *R = NULL;
 | |
|     EC_POINT *O = NULL;
 | |
|     EC_POINT *Q = NULL;
 | |
|     BIGNUM *rr = NULL;
 | |
|     BIGNUM *zero = NULL;
 | |
|     int n = 0;
 | |
|     int i = recid / 2;
 | |
| 
 | |
|     const EC_GROUP *group = EC_KEY_get0_group(eckey);
 | |
|     if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
 | |
|     BN_CTX_start(ctx);
 | |
|     order = BN_CTX_get(ctx);
 | |
|     if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
 | |
|     x = BN_CTX_get(ctx);
 | |
|     if (!BN_copy(x, order)) { ret=-1; goto err; }
 | |
|     if (!BN_mul_word(x, i)) { ret=-1; goto err; }
 | |
|     if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
 | |
|     field = BN_CTX_get(ctx);
 | |
|     if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
 | |
|     if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
 | |
|     if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
 | |
|     if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
 | |
|     if (check)
 | |
|     {
 | |
|         if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
 | |
|         if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
 | |
|         if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
 | |
|     }
 | |
|     if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
 | |
|     n = EC_GROUP_get_degree(group);
 | |
|     e = BN_CTX_get(ctx);
 | |
|     if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
 | |
|     if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
 | |
|     zero = BN_CTX_get(ctx);
 | |
|     if (!BN_zero(zero)) { ret=-1; goto err; }
 | |
|     if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
 | |
|     rr = BN_CTX_get(ctx);
 | |
|     if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
 | |
|     sor = BN_CTX_get(ctx);
 | |
|     if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
 | |
|     eor = BN_CTX_get(ctx);
 | |
|     if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
 | |
|     if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
 | |
|     if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
| err:
 | |
|     if (ctx) {
 | |
|         BN_CTX_end(ctx);
 | |
|         BN_CTX_free(ctx);
 | |
|     }
 | |
|     if (R != NULL) EC_POINT_free(R);
 | |
|     if (O != NULL) EC_POINT_free(O);
 | |
|     if (Q != NULL) EC_POINT_free(Q);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void CKey::SetCompressedPubKey()
 | |
| {
 | |
|     EC_KEY_set_conv_form(pkey, POINT_CONVERSION_COMPRESSED);
 | |
|     fCompressedPubKey = true;
 | |
| }
 | |
| 
 | |
| void CKey::Reset()
 | |
| {
 | |
|     fCompressedPubKey = false;
 | |
|     pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
 | |
|     if (pkey == NULL)
 | |
|         throw key_error("CKey::CKey() : EC_KEY_new_by_curve_name failed");
 | |
|     fSet = false;
 | |
| }
 | |
| 
 | |
| CKey::CKey()
 | |
| {
 | |
|     Reset();
 | |
| }
 | |
| 
 | |
| CKey::CKey(const CKey& b)
 | |
| {
 | |
|     pkey = EC_KEY_dup(b.pkey);
 | |
|     if (pkey == NULL)
 | |
|         throw key_error("CKey::CKey(const CKey&) : EC_KEY_dup failed");
 | |
|     fSet = b.fSet;
 | |
| }
 | |
| 
 | |
| CKey& CKey::operator=(const CKey& b)
 | |
| {
 | |
|     if (!EC_KEY_copy(pkey, b.pkey))
 | |
|         throw key_error("CKey::operator=(const CKey&) : EC_KEY_copy failed");
 | |
|     fSet = b.fSet;
 | |
|     return (*this);
 | |
| }
 | |
| 
 | |
| CKey::~CKey()
 | |
| {
 | |
|     EC_KEY_free(pkey);
 | |
| }
 | |
| 
 | |
| bool CKey::IsNull() const
 | |
| {
 | |
|     return !fSet;
 | |
| }
 | |
| 
 | |
| bool CKey::IsCompressed() const
 | |
| {
 | |
|     return fCompressedPubKey;
 | |
| }
 | |
| 
 | |
| void CKey::MakeNewKey(bool fCompressed)
 | |
| {
 | |
|     if (!EC_KEY_generate_key(pkey))
 | |
|         throw key_error("CKey::MakeNewKey() : EC_KEY_generate_key failed");
 | |
|     if (fCompressed)
 | |
|         SetCompressedPubKey();
 | |
|     fSet = true;
 | |
| }
 | |
| 
 | |
| bool CKey::SetPrivKey(const CPrivKey& vchPrivKey)
 | |
| {
 | |
|     const unsigned char* pbegin = &vchPrivKey[0];
 | |
|     if (!d2i_ECPrivateKey(&pkey, &pbegin, vchPrivKey.size()))
 | |
|         return false;
 | |
|     fSet = true;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool CKey::SetSecret(const CSecret& vchSecret, bool fCompressed)
 | |
| {
 | |
|     EC_KEY_free(pkey);
 | |
|     pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
 | |
|     if (pkey == NULL)
 | |
|         throw key_error("CKey::SetSecret() : EC_KEY_new_by_curve_name failed");
 | |
|     if (vchSecret.size() != 32)
 | |
|         throw key_error("CKey::SetSecret() : secret must be 32 bytes");
 | |
|     BIGNUM *bn = BN_bin2bn(&vchSecret[0],32,BN_new());
 | |
|     if (bn == NULL)
 | |
|         throw key_error("CKey::SetSecret() : BN_bin2bn failed");
 | |
|     if (!EC_KEY_regenerate_key(pkey,bn))
 | |
|     {
 | |
|         BN_clear_free(bn);
 | |
|         throw key_error("CKey::SetSecret() : EC_KEY_regenerate_key failed");
 | |
|     }
 | |
|     BN_clear_free(bn);
 | |
|     fSet = true;
 | |
|     if (fCompressed || fCompressedPubKey)
 | |
|         SetCompressedPubKey();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| CSecret CKey::GetSecret(bool &fCompressed) const
 | |
| {
 | |
|     CSecret vchRet;
 | |
|     vchRet.resize(32);
 | |
|     const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
 | |
|     int nBytes = BN_num_bytes(bn);
 | |
|     if (bn == NULL)
 | |
|         throw key_error("CKey::GetSecret() : EC_KEY_get0_private_key failed");
 | |
|     int n=BN_bn2bin(bn,&vchRet[32 - nBytes]);
 | |
|     if (n != nBytes)
 | |
|         throw key_error("CKey::GetSecret(): BN_bn2bin failed");
 | |
|     fCompressed = fCompressedPubKey;
 | |
|     return vchRet;
 | |
| }
 | |
| 
 | |
| CPrivKey CKey::GetPrivKey() const
 | |
| {
 | |
|     int nSize = i2d_ECPrivateKey(pkey, NULL);
 | |
|     if (!nSize)
 | |
|         throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey failed");
 | |
|     CPrivKey vchPrivKey(nSize, 0);
 | |
|     unsigned char* pbegin = &vchPrivKey[0];
 | |
|     if (i2d_ECPrivateKey(pkey, &pbegin) != nSize)
 | |
|         throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey returned unexpected size");
 | |
|     return vchPrivKey;
 | |
| }
 | |
| 
 | |
| bool CKey::SetPubKey(const CPubKey& vchPubKey)
 | |
| {
 | |
|     const unsigned char* pbegin = &vchPubKey.vchPubKey[0];
 | |
|     if (!o2i_ECPublicKey(&pkey, &pbegin, vchPubKey.vchPubKey.size()))
 | |
|         return false;
 | |
|     fSet = true;
 | |
|     if (vchPubKey.vchPubKey.size() == 33)
 | |
|         SetCompressedPubKey();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| CPubKey CKey::GetPubKey() const
 | |
| {
 | |
|     int nSize = i2o_ECPublicKey(pkey, NULL);
 | |
|     if (!nSize)
 | |
|         throw key_error("CKey::GetPubKey() : i2o_ECPublicKey failed");
 | |
|     std::vector<unsigned char> vchPubKey(nSize, 0);
 | |
|     unsigned char* pbegin = &vchPubKey[0];
 | |
|     if (i2o_ECPublicKey(pkey, &pbegin) != nSize)
 | |
|         throw key_error("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size");
 | |
|     return CPubKey(vchPubKey);
 | |
| }
 | |
| 
 | |
| bool CKey::Sign(uint256 hash, std::vector<unsigned char>& vchSig)
 | |
| {
 | |
|     unsigned int nSize = ECDSA_size(pkey);
 | |
|     vchSig.resize(nSize); // Make sure it is big enough
 | |
|     if (!ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey))
 | |
|     {
 | |
|         vchSig.clear();
 | |
|         return false;
 | |
|     }
 | |
|     vchSig.resize(nSize); // Shrink to fit actual size
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // create a compact signature (65 bytes), which allows reconstructing the used public key
 | |
| // The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
 | |
| // The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
 | |
| //                  0x1D = second key with even y, 0x1E = second key with odd y
 | |
| bool CKey::SignCompact(uint256 hash, std::vector<unsigned char>& vchSig)
 | |
| {
 | |
|     bool fOk = false;
 | |
|     ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
 | |
|     if (sig==NULL)
 | |
|         return false;
 | |
|     vchSig.clear();
 | |
|     vchSig.resize(65,0);
 | |
|     int nBitsR = BN_num_bits(sig->r);
 | |
|     int nBitsS = BN_num_bits(sig->s);
 | |
|     if (nBitsR <= 256 && nBitsS <= 256)
 | |
|     {
 | |
|         int nRecId = -1;
 | |
|         for (int i=0; i<4; i++)
 | |
|         {
 | |
|             CKey keyRec;
 | |
|             keyRec.fSet = true;
 | |
|             if (fCompressedPubKey)
 | |
|                 keyRec.SetCompressedPubKey();
 | |
|             if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1)
 | |
|                 if (keyRec.GetPubKey() == this->GetPubKey())
 | |
|                 {
 | |
|                     nRecId = i;
 | |
|                     break;
 | |
|                 }
 | |
|         }
 | |
| 
 | |
|         if (nRecId == -1)
 | |
|             throw key_error("CKey::SignCompact() : unable to construct recoverable key");
 | |
| 
 | |
|         vchSig[0] = nRecId+27+(fCompressedPubKey ? 4 : 0);
 | |
|         BN_bn2bin(sig->r,&vchSig[33-(nBitsR+7)/8]);
 | |
|         BN_bn2bin(sig->s,&vchSig[65-(nBitsS+7)/8]);
 | |
|         fOk = true;
 | |
|     }
 | |
|     ECDSA_SIG_free(sig);
 | |
|     return fOk;
 | |
| }
 | |
| 
 | |
| // reconstruct public key from a compact signature
 | |
| // This is only slightly more CPU intensive than just verifying it.
 | |
| // If this function succeeds, the recovered public key is guaranteed to be valid
 | |
| // (the signature is a valid signature of the given data for that key)
 | |
| bool CKey::SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig)
 | |
| {
 | |
|     if (vchSig.size() != 65)
 | |
|         return false;
 | |
|     int nV = vchSig[0];
 | |
|     if (nV<27 || nV>=35)
 | |
|         return false;
 | |
|     ECDSA_SIG *sig = ECDSA_SIG_new();
 | |
|     BN_bin2bn(&vchSig[1],32,sig->r);
 | |
|     BN_bin2bn(&vchSig[33],32,sig->s);
 | |
| 
 | |
|     EC_KEY_free(pkey);
 | |
|     pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
 | |
|     if (nV >= 31)
 | |
|     {
 | |
|         SetCompressedPubKey();
 | |
|         nV -= 4;
 | |
|     }
 | |
|     if (ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), nV - 27, 0) == 1)
 | |
|     {
 | |
|         fSet = true;
 | |
|         ECDSA_SIG_free(sig);
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool CKey::Verify(uint256 hash, const std::vector<unsigned char>& vchSig)
 | |
| {
 | |
|     // -1 = error, 0 = bad sig, 1 = good
 | |
|     if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool CKey::VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig)
 | |
| {
 | |
|     CKey key;
 | |
|     if (!key.SetCompactSignature(hash, vchSig))
 | |
|         return false;
 | |
|     if (GetPubKey() != key.GetPubKey())
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool CKey::IsValid()
 | |
| {
 | |
|     if (!fSet)
 | |
|         return false;
 | |
| 
 | |
|     bool fCompr;
 | |
|     CSecret secret = GetSecret(fCompr);
 | |
|     CKey key2;
 | |
|     key2.SetSecret(secret, fCompr);
 | |
|     return GetPubKey() == key2.GetPubKey();
 | |
| }
 |