Added notes on how the abstracts are represented, ensured all the class
hierarchies were up to date, and changed the orientation so the classes
are actually readable in the big chart.
Add Servo and AngularServo implementation along with docs and tests.
This is a deliberately minimal implementation designed to be added to as
we agree on new extensions (better than making an all-singing,
all-dancing version in which I get things wrong and then wind up making
backward incompatible changes to get it right :)
While the tests work well on a PC or Travis, the Pi (where I ought to be
running them!) has some issues with the timing tests. Need to relax the
tolerance of the "assert_states_and_times" method to 0.05 seconds
otherwise it periodically fails even on something reasonably quick like
a Pi 2 (less failures on a Pi 3 but still occasionally).
Also reduced default fps to 25; if the default timing occasionally fails
on a Pi 2 it's evidently too fast for a Pi 1 and shouldn't be the
default; 25 also doesn't look any different to me on a pulsing LED.
There's also a bunch of miscellaneous fixes in here; last minute typos
and chart re-gens for the 1.2 release.
This PR adds a software SPI implementation. Firstly this removes the
absolute necessity for spidev (#140), which also means when it's not
present things still work (effectively fixes#185), and also enables any
four pins to be used for SPI devices (which don't require the hardware
implementation).
The software implementation is simplistic but still supports clock
polarity and phase, select-high, and variable bits per word. However it
doesn't allow precise speeds to be implemented because it just wibbles
the clock as fast as it can (which being pure Python isn't actually that
fast).
Finally, because this PR involves creating a framework for "shared"
devices (like SPI devices with multiple channels), it made sense to bung
Energenie (#69) in as wells as this is a really simple shared device.