Changed pin.function so that it's always read-write, which in turn
permits InputDevice to force pin.function to "input" rather than
checking that it's not "input" first. This ensures internal state in
RPi.GPIO and RPIO reflects the reality of each pin's function (see
discussion under the ticket for more detail).
This PR adds a software SPI implementation. Firstly this removes the
absolute necessity for spidev (#140), which also means when it's not
present things still work (effectively fixes#185), and also enables any
four pins to be used for SPI devices (which don't require the hardware
implementation).
The software implementation is simplistic but still supports clock
polarity and phase, select-high, and variable bits per word. However it
doesn't allow precise speeds to be implemented because it just wibbles
the clock as fast as it can (which being pure Python isn't actually that
fast).
Finally, because this PR involves creating a framework for "shared"
devices (like SPI devices with multiple channels), it made sense to bung
Energenie (#69) in as wells as this is a really simple shared device.
This commit is a fairly major piece of work that abstracts all pin
operations (function, state, edge detection, PWM, etc.) into a base
"Pin" class which is then used by input/output/composite devices to
perform all required configuration.
The idea is to pave the way for I2C based IO extenders which can present
additional GPIO ports with similar capabilities to the Pi's "native"
GPIO ports. As a bonus it also abstracts away the reliance on the
RPi.GPIO library to allow alternative pin implementations (e.g. using
RPIO to take advantage of DMA based PWM), or even pure Python
implementations.