Files
termForecast/term_forecast/emojiParser.py

154 lines
4.1 KiB
Python
Executable File

#!/usr/bin/env python3.6
# -*- coding: utf-8 -*-
# @Author: KevinMidboe
# @Date: 2017-07-29 11:56:24
# @Last Modified by: KevinMidboe
# @Last Modified time: 2017-07-30 13:17:19
from fuzzywuzzy import process
# Find the first word, if it is a noun or a adjective. ✔️
# Remove the adjective and split if there is a AND ✔️
# Then match the first noun to list and add that emoji ✔️
# and then match the second to list and add that emoji ✔️
# REGEX this bitch up
symbol_table = {
'clear sky': '☀️',
'fair': '🌤',
'partly cloudy': '⛅️',
'cloudy': ' ☁️ ',
'thunder': '⚡️',
'rain showers': '🌦',
'rain': '🌧',
'sleet showers': '🌦 💦',
'sleet': '🌨 💦',
'snow showers': '⛅ ❄️',
'snow': '🌨',
'rain': '🌧',
'sleet': '🌧',
'snow': '🌨',
'showers': '🌤'
}
severity = {
'rain': ['', ' ☂️', ' ☔️'],
'sleet': [' 💦 ', ' 💧 ', ' 💧 💦 '],
'snow': [' ❄️ ', ' ❄️ ❄️ ', ' ❄️ ❄️ ❄️ ']
}
class EmojiParser(object):
def __init__(self, condition_text):
self.condition_expression = condition_text.lower()
self.severity = None
self.nouns = []
self.weather_nouns = ['cleary sky', 'fair', 'cloudy', 'rain', 'rain showers', 'sleet',
'sleet showers', 'snow showers', 'thunder', 'snow']
self.weather_adjectives = {'light': 0, 'normal': 1, 'heavy': 2}
def __str__(self):
return str([self.condition_expression, self.severity, self.nouns])
# Splits and lowers the condition text for easier parsing
def splitCondition(self, condition):
return condition.split()
# Takes a input or uses condition_expression to find adjective in sentence
def findAdjective(self, sentence=None):
if sentence is None:
sentence = self.condition_expression
# Splits and iterates over each word in sentence
expression = self.splitCondition(sentence)
for word in expression:
if word in self.weather_adjectives:
# Return the word if matched with weather_adjectives
return word
return None
# Removes the first adjective in the a given sentence
def removeAdjective(self):
adjective = self.findAdjective()
if adjective: # Adjective is not None
expression = self.splitCondition(self.condition_expression)
expression.remove(adjective)
return ' '.join(expression)
else:
return self.condition_expression
def severityValue(self):
adjective = self.findAdjective()
if adjective:
self.severity = self.weather_adjectives[adjective]
else:
self.severity = self.weather_adjectives['normal']
def findWeatherTokens(self):
# If present removes the leading adjective
sentence = self.removeAdjective()
# If multiple tokens/weather_nouns split all between the 'and'
if 'and' in sentence:
self.nouns = sentence.split(' and ')
else:
self.nouns = [sentence]
# Use the symbol_table to convert the forecast name to emoji
def emojify(self, noun):
return symbol_table[noun]
# Does as emojify above, but iterates over a list if multiple elements
def emojifyList(self, noun_list):
returnList = []
# TODO use more like a map function?
for noun in noun_list:
returnList.append(self.emojify(noun))
return ' '.join(returnList)
def findPrimaryForecast(self):
# Copies the contents not the refrence to the list
noun_list = list(self.nouns)
forecast = noun_list.pop(0)
# Translates to emoji once here instead of twice below
forecast_emoji = self.emojify(forecast)
if forecast in severity:
return ('%s %s' % (forecast_emoji, severity[forecast]))
else:
return forecast_emoji
# Trying to analyze the semantics of the condition text
def emojifyWeatherForecast(self):
# Finds the tokens/nouns of weather for the given input text and severity value
self.findWeatherTokens()
self.severityValue()
primary_forecast = self.findPrimaryForecast()
secondary_forecast = self.emojifyList(self.nouns[1:])
return ('%s %s' % (primary_forecast, secondary_forecast))
def convertSematicsToEmoji(self):
return self.emojifyWeatherForecast()
def main():
emojiParser = EmojiParser('Cloudy')
print(emojiParser.convertSematicsToEmoji())
if __name__ == '__main__':
main()