refactor(server)*: tsconfigs (#2689)

* refactor(server): tsconfigs

* chore: dummy commit

* fix: start.sh

* chore: restore original entry scripts
This commit is contained in:
Jason Rasmussen
2023-06-08 11:01:07 -04:00
committed by GitHub
parent a2130aa6c5
commit 8ebac41318
465 changed files with 209 additions and 332 deletions

View File

@@ -0,0 +1,14 @@
import { AssetFaceEntity } from '@app/infra/entities';
export const IFaceRepository = 'IFaceRepository';
export interface AssetFaceId {
assetId: string;
personId: string;
}
export interface IFaceRepository {
getAll(): Promise<AssetFaceEntity[]>;
getByIds(ids: AssetFaceId[]): Promise<AssetFaceEntity[]>;
create(entity: Partial<AssetFaceEntity>): Promise<AssetFaceEntity>;
}

View File

@@ -0,0 +1,309 @@
import {
assetEntityStub,
faceStub,
newAssetRepositoryMock,
newFaceRepositoryMock,
newJobRepositoryMock,
newMachineLearningRepositoryMock,
newMediaRepositoryMock,
newPersonRepositoryMock,
newSearchRepositoryMock,
newStorageRepositoryMock,
personStub,
} from '@test';
import { IAssetRepository, WithoutProperty } from '../asset';
import { IJobRepository, JobName } from '../job';
import { IMediaRepository } from '../media';
import { IPersonRepository } from '../person';
import { ISearchRepository } from '../search';
import { IMachineLearningRepository } from '../smart-info';
import { IStorageRepository } from '../storage';
import { IFaceRepository } from './face.repository';
import { FacialRecognitionService } from './facial-recognition.services';
const croppedFace = Buffer.from('Cropped Face');
const face = {
start: {
assetId: 'asset-1',
personId: 'person-1',
boundingBox: {
x1: 5,
y1: 5,
x2: 505,
y2: 505,
},
imageHeight: 1000,
imageWidth: 1000,
},
middle: {
assetId: 'asset-1',
personId: 'person-1',
boundingBox: {
x1: 100,
y1: 100,
x2: 200,
y2: 200,
},
imageHeight: 500,
imageWidth: 400,
embedding: [1, 2, 3, 4],
score: 0.2,
},
end: {
assetId: 'asset-1',
personId: 'person-1',
boundingBox: {
x1: 300,
y1: 300,
x2: 495,
y2: 495,
},
imageHeight: 500,
imageWidth: 500,
},
};
const faceSearch = {
noMatch: {
total: 0,
count: 0,
page: 1,
items: [],
distances: [],
facets: [],
},
oneMatch: {
total: 1,
count: 1,
page: 1,
items: [faceStub.face1],
distances: [0.1],
facets: [],
},
oneRemoteMatch: {
total: 1,
count: 1,
page: 1,
items: [faceStub.face1],
distances: [0.8],
facets: [],
},
};
describe(FacialRecognitionService.name, () => {
let sut: FacialRecognitionService;
let assetMock: jest.Mocked<IAssetRepository>;
let faceMock: jest.Mocked<IFaceRepository>;
let jobMock: jest.Mocked<IJobRepository>;
let machineLearningMock: jest.Mocked<IMachineLearningRepository>;
let mediaMock: jest.Mocked<IMediaRepository>;
let personMock: jest.Mocked<IPersonRepository>;
let searchMock: jest.Mocked<ISearchRepository>;
let storageMock: jest.Mocked<IStorageRepository>;
beforeEach(async () => {
assetMock = newAssetRepositoryMock();
faceMock = newFaceRepositoryMock();
jobMock = newJobRepositoryMock();
machineLearningMock = newMachineLearningRepositoryMock();
mediaMock = newMediaRepositoryMock();
personMock = newPersonRepositoryMock();
searchMock = newSearchRepositoryMock();
storageMock = newStorageRepositoryMock();
mediaMock.crop.mockResolvedValue(croppedFace);
sut = new FacialRecognitionService(
assetMock,
faceMock,
jobMock,
machineLearningMock,
mediaMock,
personMock,
searchMock,
storageMock,
);
});
it('should be defined', () => {
expect(sut).toBeDefined();
});
describe('handleQueueRecognizeFaces', () => {
it('should queue missing assets', async () => {
assetMock.getWithout.mockResolvedValue({
items: [assetEntityStub.image],
hasNextPage: false,
});
await sut.handleQueueRecognizeFaces({});
expect(assetMock.getWithout).toHaveBeenCalledWith({ skip: 0, take: 1000 }, WithoutProperty.FACES);
expect(jobMock.queue).toHaveBeenCalledWith({
name: JobName.RECOGNIZE_FACES,
data: { id: assetEntityStub.image.id },
});
});
it('should queue all assets', async () => {
assetMock.getAll.mockResolvedValue({
items: [assetEntityStub.image],
hasNextPage: false,
});
personMock.deleteAll.mockResolvedValue(5);
searchMock.deleteAllFaces.mockResolvedValue(100);
await sut.handleQueueRecognizeFaces({ force: true });
expect(assetMock.getAll).toHaveBeenCalled();
expect(jobMock.queue).toHaveBeenCalledWith({
name: JobName.RECOGNIZE_FACES,
data: { id: assetEntityStub.image.id },
});
});
});
describe('handleRecognizeFaces', () => {
it('should skip when no resize path', async () => {
assetMock.getByIds.mockResolvedValue([assetEntityStub.noResizePath]);
await sut.handleRecognizeFaces({ id: assetEntityStub.noResizePath.id });
expect(machineLearningMock.detectFaces).not.toHaveBeenCalled();
});
it('should handle no results', async () => {
machineLearningMock.detectFaces.mockResolvedValue([]);
assetMock.getByIds.mockResolvedValue([assetEntityStub.image]);
await sut.handleRecognizeFaces({ id: assetEntityStub.image.id });
expect(machineLearningMock.detectFaces).toHaveBeenCalledWith({
imagePath: assetEntityStub.image.resizePath,
});
expect(faceMock.create).not.toHaveBeenCalled();
expect(jobMock.queue).not.toHaveBeenCalled();
});
it('should match existing people', async () => {
machineLearningMock.detectFaces.mockResolvedValue([face.middle]);
searchMock.searchFaces.mockResolvedValue(faceSearch.oneMatch);
assetMock.getByIds.mockResolvedValue([assetEntityStub.image]);
await sut.handleRecognizeFaces({ id: assetEntityStub.image.id });
expect(faceMock.create).toHaveBeenCalledWith({
personId: 'person-1',
assetId: 'asset-id',
embedding: [1, 2, 3, 4],
});
});
it('should create a new person', async () => {
machineLearningMock.detectFaces.mockResolvedValue([face.middle]);
searchMock.searchFaces.mockResolvedValue(faceSearch.oneRemoteMatch);
personMock.create.mockResolvedValue(personStub.noName);
assetMock.getByIds.mockResolvedValue([assetEntityStub.image]);
await sut.handleRecognizeFaces({ id: assetEntityStub.image.id });
expect(personMock.create).toHaveBeenCalledWith({ ownerId: assetEntityStub.image.ownerId });
expect(faceMock.create).toHaveBeenCalledWith({
personId: 'person-1',
assetId: 'asset-id',
embedding: [1, 2, 3, 4],
});
expect(jobMock.queue.mock.calls).toEqual([
[
{
name: JobName.GENERATE_FACE_THUMBNAIL,
data: {
assetId: 'asset-1',
personId: 'person-1',
boundingBox: {
x1: 100,
y1: 100,
x2: 200,
y2: 200,
},
imageHeight: 500,
imageWidth: 400,
score: 0.2,
},
},
],
[{ name: JobName.SEARCH_INDEX_FACE, data: { personId: 'person-1', assetId: 'asset-id' } }],
]);
});
});
describe('handleGenerateFaceThumbnail', () => {
it('should skip an asset not found', async () => {
assetMock.getByIds.mockResolvedValue([]);
await sut.handleGenerateFaceThumbnail(face.middle);
expect(mediaMock.crop).not.toHaveBeenCalled();
});
it('should skip an asset without a thumbnail', async () => {
assetMock.getByIds.mockResolvedValue([assetEntityStub.noResizePath]);
await sut.handleGenerateFaceThumbnail(face.middle);
expect(mediaMock.crop).not.toHaveBeenCalled();
});
it('should generate a thumbnail', async () => {
assetMock.getByIds.mockResolvedValue([assetEntityStub.image]);
await sut.handleGenerateFaceThumbnail(face.middle);
expect(assetMock.getByIds).toHaveBeenCalledWith(['asset-1']);
expect(storageMock.mkdirSync).toHaveBeenCalledWith('upload/thumbs/user-id');
expect(mediaMock.crop).toHaveBeenCalledWith('/uploads/user-id/thumbs/path.ext', {
left: 95,
top: 95,
width: 110,
height: 110,
});
expect(mediaMock.resize).toHaveBeenCalledWith(croppedFace, 'upload/thumbs/user-id/person-1.jpeg', {
format: 'jpeg',
size: 250,
});
expect(personMock.update).toHaveBeenCalledWith({
id: 'person-1',
thumbnailPath: 'upload/thumbs/user-id/person-1.jpeg',
});
});
it('should generate a thumbnail without going negative', async () => {
assetMock.getByIds.mockResolvedValue([assetEntityStub.image]);
await sut.handleGenerateFaceThumbnail(face.start);
expect(mediaMock.crop).toHaveBeenCalledWith('/uploads/user-id/thumbs/path.ext', {
left: 0,
top: 0,
width: 510,
height: 510,
});
expect(mediaMock.resize).toHaveBeenCalledWith(croppedFace, 'upload/thumbs/user-id/person-1.jpeg', {
format: 'jpeg',
size: 250,
});
});
it('should generate a thumbnail without overflowing', async () => {
assetMock.getByIds.mockResolvedValue([assetEntityStub.image]);
await sut.handleGenerateFaceThumbnail(face.end);
expect(mediaMock.crop).toHaveBeenCalledWith('/uploads/user-id/thumbs/path.ext', {
left: 297,
top: 297,
width: 202,
height: 202,
});
expect(mediaMock.resize).toHaveBeenCalledWith(croppedFace, 'upload/thumbs/user-id/person-1.jpeg', {
format: 'jpeg',
size: 250,
});
});
});
});

View File

@@ -0,0 +1,139 @@
import { Inject, Logger } from '@nestjs/common';
import { join } from 'path';
import { IAssetRepository, WithoutProperty } from '../asset';
import { MACHINE_LEARNING_ENABLED } from '../domain.constant';
import { usePagination } from '../domain.util';
import { IBaseJob, IEntityJob, IFaceThumbnailJob, IJobRepository, JobName, JOBS_ASSET_PAGINATION_SIZE } from '../job';
import { CropOptions, FACE_THUMBNAIL_SIZE, IMediaRepository } from '../media';
import { IPersonRepository } from '../person/person.repository';
import { ISearchRepository } from '../search/search.repository';
import { IMachineLearningRepository } from '../smart-info';
import { IStorageRepository, StorageCore, StorageFolder } from '../storage';
import { AssetFaceId, IFaceRepository } from './face.repository';
export class FacialRecognitionService {
private logger = new Logger(FacialRecognitionService.name);
private storageCore = new StorageCore();
constructor(
@Inject(IAssetRepository) private assetRepository: IAssetRepository,
@Inject(IFaceRepository) private faceRepository: IFaceRepository,
@Inject(IJobRepository) private jobRepository: IJobRepository,
@Inject(IMachineLearningRepository) private machineLearning: IMachineLearningRepository,
@Inject(IMediaRepository) private mediaRepository: IMediaRepository,
@Inject(IPersonRepository) private personRepository: IPersonRepository,
@Inject(ISearchRepository) private searchRepository: ISearchRepository,
@Inject(IStorageRepository) private storageRepository: IStorageRepository,
) {}
async handleQueueRecognizeFaces({ force }: IBaseJob) {
const assetPagination = usePagination(JOBS_ASSET_PAGINATION_SIZE, (pagination) => {
return force
? this.assetRepository.getAll(pagination)
: this.assetRepository.getWithout(pagination, WithoutProperty.FACES);
});
if (force) {
const people = await this.personRepository.deleteAll();
const faces = await this.searchRepository.deleteAllFaces();
this.logger.debug(`Deleted ${people} people and ${faces} faces`);
}
for await (const assets of assetPagination) {
for (const asset of assets) {
await this.jobRepository.queue({ name: JobName.RECOGNIZE_FACES, data: { id: asset.id } });
}
}
return true;
}
async handleRecognizeFaces({ id }: IEntityJob) {
const [asset] = await this.assetRepository.getByIds([id]);
if (!asset || !MACHINE_LEARNING_ENABLED || !asset.resizePath) {
return false;
}
const faces = await this.machineLearning.detectFaces({ imagePath: asset.resizePath });
this.logger.debug(`${faces.length} faces detected in ${asset.resizePath}`);
this.logger.verbose(faces.map((face) => ({ ...face, embedding: `float[${face.embedding.length}]` })));
for (const { embedding, ...rest } of faces) {
const faceSearchResult = await this.searchRepository.searchFaces(embedding, { ownerId: asset.ownerId });
let personId: string | null = null;
// try to find a matching face and link to the associated person
// The closer to 0, the better the match. Range is from 0 to 2
if (faceSearchResult.total && faceSearchResult.distances[0] < 0.6) {
this.logger.verbose(`Match face with distance ${faceSearchResult.distances[0]}`);
personId = faceSearchResult.items[0].personId;
}
if (!personId) {
this.logger.debug('No matches, creating a new person.');
const person = await this.personRepository.create({ ownerId: asset.ownerId });
personId = person.id;
await this.jobRepository.queue({
name: JobName.GENERATE_FACE_THUMBNAIL,
data: { assetId: asset.id, personId, ...rest },
});
}
const faceId: AssetFaceId = { assetId: asset.id, personId };
await this.faceRepository.create({ ...faceId, embedding });
await this.jobRepository.queue({ name: JobName.SEARCH_INDEX_FACE, data: faceId });
}
return true;
}
async handleGenerateFaceThumbnail(data: IFaceThumbnailJob) {
const { assetId, personId, boundingBox, imageWidth, imageHeight } = data;
const [asset] = await this.assetRepository.getByIds([assetId]);
if (!asset || !asset.resizePath) {
return false;
}
this.logger.verbose(`Cropping face for person: ${personId}`);
const outputFolder = this.storageCore.getFolderLocation(StorageFolder.THUMBNAILS, asset.ownerId);
const output = join(outputFolder, `${personId}.jpeg`);
this.storageRepository.mkdirSync(outputFolder);
const { x1, y1, x2, y2 } = boundingBox;
const halfWidth = (x2 - x1) / 2;
const halfHeight = (y2 - y1) / 2;
const middleX = Math.round(x1 + halfWidth);
const middleY = Math.round(y1 + halfHeight);
// zoom out 10%
const targetHalfSize = Math.floor(Math.max(halfWidth, halfHeight) * 1.1);
// get the longest distance from the center of the image without overflowing
const newHalfSize = Math.min(
middleX - Math.max(0, middleX - targetHalfSize),
middleY - Math.max(0, middleY - targetHalfSize),
Math.min(imageWidth - 1, middleX + targetHalfSize) - middleX,
Math.min(imageHeight - 1, middleY + targetHalfSize) - middleY,
);
const cropOptions: CropOptions = {
left: middleX - newHalfSize,
top: middleY - newHalfSize,
width: newHalfSize * 2,
height: newHalfSize * 2,
};
const croppedOutput = await this.mediaRepository.crop(asset.resizePath, cropOptions);
await this.mediaRepository.resize(croppedOutput, output, { size: FACE_THUMBNAIL_SIZE, format: 'jpeg' });
await this.personRepository.update({ id: personId, thumbnailPath: output });
return true;
}
}

View File

@@ -0,0 +1,2 @@
export * from './facial-recognition.services';
export * from './face.repository';