Add support for the GAP language

This commit is contained in:
Max Horn
2014-04-04 23:46:39 +02:00
parent f39456ee47
commit 078a2877c7
9 changed files with 2531 additions and 0 deletions

View File

@@ -620,6 +620,16 @@ Forth:
extensions:
- .4th
GAP:
type: programming
lexer: Text only
primary_extension: .g
extensions:
- .g
- .gap
- .gd
- .gi
GAS:
type: programming
group: Assembly

View File

@@ -129,6 +129,11 @@
".forth",
".fth"
],
"GAP": [
".g",
".gd",
".gi"
],
"GAS": [
".s"
],

307
samples/GAP/Magic.gd Normal file
View File

@@ -0,0 +1,307 @@
#############################################################################
##
## Magic.gd AutoDoc package
##
## Copyright 2013, Max Horn, JLU Giessen
## Sebastian Gutsche, University of Kaiserslautern
##
#############################################################################
#! @Description
#! This is the main function of the &AutoDoc; package. It can perform
#! any combination of the following three tasks:
#! <Enum>
#! <Item>
#! It can (re)generate a scaffold for your package manual.
#! That is, it can produce two XML files in &GAPDoc; format to be used as part
#! of your manual: First, a file named <F>doc/PACKAGENAME.xml</F>
#! (with your package's name substituted) which is used as
#! main file for the package manual, i.e. this file sets the
#! XML DOCTYPE and defines various XML entities, includes
#! other XML files (both those generated by &AutoDoc; as well
#! as additional files created by other means), tells &GAPDoc;
#! to generate a table of content and an index, and more.
#! Secondly, it creates a file <F>doc/title.xml</F> containing a title
#! page for your documentation, with information about your package
#! (name, description, version), its authors and more, based
#! on the data in your <F>PackageInfo.g</F>.
#! </Item>
#! <Item>
#! It can scan your package for &AutoDoc; based documentation (by using &AutoDoc;
#! tags and the Autodoc command.
#! This will
#! produce further XML files to be used as part of the package manual.
#! </Item>
#! <Item>
#! It can use &GAPDoc; to generate PDF, text and HTML (with
#! MathJaX enabled) documentation from the &GAPDoc; XML files it
#! generated as well as additional such files provided by you. For
#! this, it invokes <Ref Func='MakeGAPDocDoc' BookName='gapdoc'/>
#! to convert the XML sources, and it also instructs &GAPDoc; to copy
#! supplementary files (such as CSS style files) into your doc directory
#! (see <Ref Func='CopyHTMLStyleFiles' BookName='gapdoc'/>).
#! </Item>
#! </Enum>
#! For more information and some examples, please refer to Chapter <Ref Label='Tutorials'/>.
#! <P/>
#! The parameters have the following meanings:
#! <List>
#!
#! <Mark><A>package_name</A></Mark>
#! <Item>
#! The name of the package whose documentation should be(re)generated.
#! </Item>
#!
#!
#! <Mark><A>option_record</A></Mark>
#! <Item>
#! <A>option_record</A> can be a record with some additional options.
#! The following are currently supported:
#! <List>
#! <Mark><A>dir</A></Mark>
#! <Item>
#! This should be a string containing a (relative) path or a
#! Directory() object specifying where the package documentation
#! (i.e. the &GAPDoc; XML files) are stored.
#! <Br/>
#! <E>Default value: <C>"doc/"</C>.</E>
#! </Item>
#! <Mark><A>scaffold</A></Mark>
#! <Item>
#! This controls whether and how to generate scaffold XML files
#! for the main and title page of the package's documentation.
#! <P/>
#! The value should be either <K>true</K>, <K>false</K> or a
#! record. If it is a record or <K>true</K> (the latter is
#! equivalent to specifying an empty record), then this feature is
#! enabled. It is also enabled if <A>opt.scaffold</A> is missing but the
#! package's info record in <F>PackageInfo.g</F> has an <C>AutoDoc</C> entry.
#! In all other cases (in particular if <A>opt.scaffold</A> is
#! <K>false</K>), scaffolding is disabled.
#! <P/>
#!
#! If <A>opt.scaffold</A> is a record, it may contain the following entries.
#!
#### TODO: mention merging with PackageInfo.AutoDoc!
#! <List>
#!
#! <Mark><A>includes</A></Mark>
#! <Item>
#! A list of XML files to be included in the body of the main XML file.
#! If you specify this list and also are using &AutoDoc; to document
#! your operations with &AutoDoc; comments,
#! you can add <F>AutoDocMainFile.xml</F> to this list
#! to control at which point the documentation produced by &AutoDoc;
#! is inserted. If you do not do this, it will be added after the last
#! of your own XML files.
#! </Item>
#!
#! <Mark><A>appendix</A></Mark>
#! <Item>
#! This entry is similar to <A>opt.scaffold.includes</A> but is used
#! to specify files to include after the main body of the manual,
#! i.e. typically appendices.
#! </Item>
#!
#! <Mark><A>bib</A></Mark>
#! <Item>
#! The name of a bibliography file, in Bibtex or XML format.
#! If this key is not set, but there is a file <F>doc/PACKAGENAME.bib</F>
#! then it is assumed that you want to use this as your bibliography.
#! </Item>
#!
#### TODO: The 'entities' param is a bit strange. We should probably change it to be a bit more
#### general, as one might want to define other entities... For now, we do not document it
#### to leave us the choice of revising how it works.
####
#### <Mark><A>entities</A></Mark>
#### <Item>
#### A list of package names or other entities which are used to define corresponding XML entities.
#### For example, if set to a list containing the string <Q>SomePackage</Q>,
#### then the following is added to the XML preamble:
#### <Listing><![CDATA[<!ENTITY SomePackage '<Package>SomePackage</Package>'>]]></Listing>
#### This allows you to write <Q>&amp;SomePackage;</Q> in your documentation
#### to reference that package. If another type of entity is desired, one can simply add,
#### instead of a string, add a two entry list <A>a</A> to the list. It will be handled as
#### <Listing><![CDATA[<!ENTITY a[ 2 ] '<a[ 1 ]>a[ 2 ]</a[ 1 ]>'>]]></Listing>,
#### so please be careful.
#### </Item>
#!
#! <Mark><A>TitlePage</A></Mark>
#! <Item>
#! A record whose entries are used to embellish the generated titlepage
#! for the package manual with extra information, such as a copyright
#! statement or acknowledgments. To this end, the names of the record
#! components are used as XML element names, and the values of the
#! components are outputted as content of these XML elements. For
#! example, you could pass the following record to set a custom
#! acknowledgements text:
#! <Listing><![CDATA[
#! rec( Acknowledgements := "Many thanks to ..." )]]></Listing>
#! For a list of valid entries in the titlepage, please refer to the
#! &GAPDoc; manual, specifically section <Ref Subsect='Title' BookName='gapdoc'/>
#! and following.
#! </Item>
#! <Mark><A>document_class</A></Mark>
#! <Item>
#! Sets the document class of the resulting pdf. The value can either be a string
#! which has to be the name of the new document class, a list containing this string, or
#! a list of two strings. Then the first one has to be the document class name, the second one
#! the option string ( contained in [ ] ) in LaTeX.
#! </Item>
#! <Mark><A>latex_header_file</A></Mark>
#! <Item>
#! Replaces the standard header from &GAPDoc; completely with the header in this LaTeX file.
#! Please be careful here, and look at GAPDoc's latexheader.tex file for an example.
#! </Item>
#! <Mark><A>gapdoc_latex_options</A></Mark>
#! <Item>
#! Must be a record with entries which can be understood by SetGapDocLaTeXOptions. Each entry can be a string, which
#! will be given to &GAPDoc; directly, or a list containing of two entries: The first one must be the string "file",
#! the second one a filename. This file will be read and then its content is passed to &GAPDoc; as option with the name
#! of the entry.
#! </Item>
#!
#! </List>
#! </Item>
#!
#!
#! <Mark><A>autodoc</A></Mark>
#! <Item>
#! This controls whether and how to generate addition XML documentation files
#! by scanning for &AutoDoc; documentation comments.
#! <P/>
#! The value should be either <K>true</K>, <K>false</K> or a
#! record. If it is a record or <K>true</K> (the latter is
#! equivalent to specifying an empty record), then this feature is
#! enabled. It is also enabled if <A>opt.autodoc</A> is missing but the
#! package depends (directly) on the &AutoDoc; package.
#! In all other cases (in particular if <A>opt.autodoc</A> is
#! <K>false</K>), this feature is disabled.
#! <P/>
#!
#! If <A>opt.autodoc</A> is a record, it may contain the following entries.
#!
#! <List>
#!
#! <Mark><A>files</A></Mark>
#! <Item>
#! A list of files (given by paths relative to the package directory)
#! to be scanned for &AutoDoc; documentation comments.
#! Usually it is more convenient to use <A>autodoc.scan_dirs</A>, see below.
#! </Item>
#!
#! <Mark><A>scan_dirs</A></Mark>
#! <Item>
#! A list of subdirectories of the package directory (given as relative paths)
#! which &AutoDoc; then scans for .gi, .gd and .g files; all of these files
#! are then scanned for &AutoDoc; documentation comments.
#! <Br/>
#! <E>Default value: <C>[ "gap", "lib", "examples", "examples/doc" ]</C>.</E>
#! </Item>
#!
#! <Mark><A>level</A></Mark>
#! <Item>
#! This defines the level of the created documentation. The default value is 0.
#! When parts of the manual are declared with a higher value
#! they will not be printed into the manual.
#! </Item>
#!
#### TODO: Document section_intros later on.
#### However, note that thanks to the new AutoDoc comment syntax, the only remaining
#### use for this seems to be the ability to specify the order of chapters and
#### sections.
#### <Mark><A>section_intros</A></Mark>
#### <Item>
#### TODO.
#### </Item>
#!
#! </List>
#! </Item>
#!
#!
#! <Mark><A>gapdoc</A></Mark>
#! <Item>
#! This controls whether and how to invoke &GAPDoc; to create HTML, PDF and text
#! files from your various XML files.
#! <P/>
#! The value should be either <K>true</K>, <K>false</K> or a
#! record. If it is a record or <K>true</K> (the latter is
#! equivalent to specifying an empty record), then this feature is
#! enabled. It is also enabled if <A>opt.gapdoc</A> is missing.
#! In all other cases (in particular if <A>opt.gapdoc</A> is
#! <K>false</K>), this feature is disabled.
#! <P/>
#!
#! If <A>opt.gapdoc</A> is a record, it may contain the following entries.
#!
#! <List>
#!
#!
#### Note: 'main' is strictly speaking also used for the scaffold.
#### However, if one uses the scaffolding mechanism, then it is not
#### really necessary to specify a custom name for the main XML file.
#### Thus, the purpose of this parameter is to cater for packages
#### that have existing documentation using a different XML name,
#### and which do not wish to use scaffolding.
####
#### This explain why we only allow specifying gapdoc.main.
#### The scaffolding code will still honor it, though, just in case.
#! <Mark><A>main</A></Mark>
#! <Item>
#! The name of the main XML file of the package manual.
#! This exists primarily to support packages with existing manual
#! which use a filename here which differs from the default.
#! In particular, specifying this is unnecessary when using scaffolding.
#! <Br/>
#! <E>Default value: <C>PACKAGENAME.xml</C></E>.
#! </Item>
#!
#! <Mark><A>files</A></Mark>
#! <Item>
#! A list of files (given by paths relative to the package directory)
#! to be scanned for &GAPDoc; documentation comments.
#! Usually it is more convenient to use <A>gapdoc.scan_dirs</A>, see below.
#! </Item>
#!
#! <Mark><A>scan_dirs</A></Mark>
#! <Item>
#! A list of subdirectories of the package directory (given as relative paths)
#! which &AutoDoc; then scans for .gi, .gd and .g files; all of these files
#! are then scanned for &GAPDoc; documentation comments.
#! <Br/>
#! <E>Default value: <C>[ "gap", "lib", "examples", "examples/doc" ]</C>.</E>
#! </Item>
#!
#! </List>
#! </Item>
## This is the maketest part. Still under construction.
#! <Mark><A>maketest</A></Mark>
#! <Item>
#! The maketest item can be true or a record. When it is true,
#! a simple maketest.g is created in the main package directory,
#! which can be used to test the examples from the manual. As a record,
#! the entry can have the following entries itself, to specify some options.
#! <List>
#! <Mark>filename</Mark>
#! <Item>
#! Sets the name of the test file.
#! </Item>
#! <Mark>commands</Mark>
#! <Item>
#! A list of strings, each one a command, which
#! will be executed at the beginning of the test file.
#! </Item>
#! </List>
#! </Item>
#!
#! </List>
#! </Item>
#! </List>
#!
#! @Returns nothing
#! @Arguments package_name[, option_record ]
#! @ChapterInfo AutoDoc, The AutoDoc() function
DeclareGlobalFunction( "AutoDoc" );

534
samples/GAP/Magic.gi Normal file
View File

@@ -0,0 +1,534 @@
#############################################################################
##
## Magic.gi AutoDoc package
##
## Copyright 2013, Max Horn, JLU Giessen
## Sebastian Gutsche, University of Kaiserslautern
##
#############################################################################
# Check if a string has the given suffix or not. Another
# name for this would "StringEndsWithOtherString".
# For example, AUTODOC_HasSuffix("file.gi", ".gi") returns
# true while AUTODOC_HasSuffix("file.txt", ".gi") returns false.
BindGlobal( "AUTODOC_HasSuffix",
function(str, suffix)
local n, m;
n := Length(str);
m := Length(suffix);
return n >= m and str{[n-m+1..n]} = suffix;
end );
# Given a string containing a ".", , return its suffix,
# i.e. the bit after the last ".". For example, given "test.txt",
# it returns "txt".
BindGlobal( "AUTODOC_GetSuffix",
function(str)
local i;
i := Length(str);
while i > 0 and str[i] <> '.' do i := i - 1; od;
if i < 0 then return ""; fi;
return str{[i+1..Length(str)]};
end );
# Check whether the given directory exists, and if not, attempt
# to create it.
BindGlobal( "AUTODOC_CreateDirIfMissing",
function(d)
local tmp;
if not IsDirectoryPath(d) then
tmp := CreateDir(d); # Note: CreateDir is currently undocumented
if tmp = fail then
Error("Cannot create directory ", d, "\n",
"Error message: ", LastSystemError().message, "\n");
return false;
fi;
fi;
return true;
end );
# Scan the given (by name) subdirs of a package dir for
# files with one of the given extensions, and return the corresponding
# filenames, as relative paths (relative to the package dir).
#
# For example, the invocation
# AUTODOC_FindMatchingFiles("AutoDoc", [ "gap/" ], [ "gi", "gd" ]);
# might return a list looking like
# [ "gap/AutoDocMainFunction.gd", "gap/AutoDocMainFunction.gi", ... ]
BindGlobal( "AUTODOC_FindMatchingFiles",
function (pkg, subdirs, extensions)
local d_rel, d, tmp, files, result;
result := [];
for d_rel in subdirs do
# Get the absolute path to the directory in side the package...
d := DirectoriesPackageLibrary( pkg, d_rel );
if IsEmpty( d ) then
continue;
fi;
d := d[1];
# ... but also keep the relative path (such as "gap")
d_rel := Directory( d_rel );
files := DirectoryContents( d );
Sort( files );
for tmp in files do
if not AUTODOC_GetSuffix( tmp ) in [ "g", "gi", "gd", "autodoc" ] then
continue;
fi;
if not IsReadableFile( Filename( d, tmp ) ) then
continue;
fi;
Add( result, Filename( d_rel, tmp ) );
od;
od;
return result;
end );
# AutoDoc(pkg[, opt])
#
## Make this function callable with the package_name AutoDocWorksheet.
## Which will then create a worksheet!
InstallGlobalFunction( AutoDoc,
function( arg )
local pkg, package_info, opt, scaffold, gapdoc, maketest,
autodoc, pkg_dir, doc_dir, doc_dir_rel, d, tmp,
title_page, tree, is_worksheet, position_document_class, i, gapdoc_latex_option_record;
pkg := arg[1];
if LowercaseString( pkg ) = "autodocworksheet" then
is_worksheet := true;
package_info := rec( );
pkg_dir := DirectoryCurrent( );
else
is_worksheet := false;
package_info := PackageInfo( pkg )[ 1 ];
pkg_dir := DirectoriesPackageLibrary( pkg, "" )[1];
fi;
if Length(arg) >= 2 then
opt := arg[2];
else
opt := rec();
fi;
# Check for certain user supplied options, and if present, add them
# to the opt record.
tmp := function( key )
local val;
val := ValueOption( key );
if val <> fail then
opt.(key) := val;
fi;
end;
tmp( "dir" );
tmp( "scaffold" );
tmp( "autodoc" );
tmp( "gapdoc" );
tmp( "maketest" );
#
# Setup the output directory
#
if not IsBound( opt.dir ) then
doc_dir := "doc";
elif IsString( opt.dir ) or IsDirectory( opt.dir ) then
doc_dir := opt.dir;
else
Error( "opt.dir must be a string containing a path, or a directory object" );
fi;
if IsString( doc_dir ) then
# Record the relative version of the path
doc_dir_rel := Directory( doc_dir );
# We intentionally do not use
# DirectoriesPackageLibrary( pkg, "doc" )
# because it returns an empty list if the subdirectory is missing.
# But we want to handle that case by creating the directory.
doc_dir := Filename(pkg_dir, doc_dir);
doc_dir := Directory(doc_dir);
else
# TODO: doc_dir_rel = ... ?
fi;
# Ensure the output directory exists, create it if necessary
AUTODOC_CreateDirIfMissing(Filename(doc_dir, ""));
# Let the developer know where we are generating the documentation.
# This helps diagnose problems where multiple instances of a package
# are visible to GAP and the wrong one is used for generating the
# documentation.
# TODO: Using Info() instead of Print?
Print( "Generating documentation in ", doc_dir, "\n" );
#
# Extract scaffolding settings, which can be controlled via
# opt.scaffold or package_info.AutoDoc. The former has precedence.
#
if not IsBound(opt.scaffold) then
# Default: enable scaffolding if and only if package_info.AutoDoc is present
if IsBound( package_info.AutoDoc ) then
scaffold := rec( );
fi;
elif IsRecord(opt.scaffold) then
scaffold := opt.scaffold;
elif IsBool(opt.scaffold) then
if opt.scaffold = true then
scaffold := rec();
fi;
else
Error("opt.scaffold must be a bool or a record");
fi;
# Merge package_info.AutoDoc into scaffold
if IsBound(scaffold) and IsBound( package_info.AutoDoc ) then
AUTODOC_APPEND_RECORD_WRITEONCE( scaffold, package_info.AutoDoc );
fi;
if IsBound( scaffold ) then
AUTODOC_WriteOnce( scaffold, "TitlePage", true );
AUTODOC_WriteOnce( scaffold, "MainPage", true );
fi;
#
# Extract AutoDoc settings
#
if not IsBound(opt.autodoc) and not is_worksheet then
# Enable AutoDoc support if the package depends on AutoDoc.
tmp := Concatenation( package_info.Dependencies.NeededOtherPackages,
package_info.Dependencies.SuggestedOtherPackages );
if ForAny( tmp, x -> LowercaseString(x[1]) = "autodoc" ) then
autodoc := rec();
fi;
elif IsRecord(opt.autodoc) then
autodoc := opt.autodoc;
elif IsBool(opt.autodoc) and opt.autodoc = true then
autodoc := rec();
fi;
if IsBound(autodoc) then
if not IsBound( autodoc.files ) then
autodoc.files := [ ];
fi;
if not IsBound( autodoc.scan_dirs ) and not is_worksheet then
autodoc.scan_dirs := [ "gap", "lib", "examples", "examples/doc" ];
elif not IsBound( autodoc.scan_dirs ) and is_worksheet then
autodoc.scan_dirs := [ ];
fi;
if not IsBound( autodoc.level ) then
autodoc.level := 0;
fi;
PushOptions( rec( level_value := autodoc.level ) );
if not is_worksheet then
Append( autodoc.files, AUTODOC_FindMatchingFiles(pkg, autodoc.scan_dirs, [ "g", "gi", "gd" ]) );
fi;
fi;
#
# Extract GAPDoc settings
#
if not IsBound( opt.gapdoc ) then
# Enable GAPDoc support by default
gapdoc := rec();
elif IsRecord( opt.gapdoc ) then
gapdoc := opt.gapdoc;
elif IsBool( opt.gapdoc ) and opt.gapdoc = true then
gapdoc := rec();
fi;
#
# Extract test settings
#
if IsBound( opt.maketest ) then
if IsRecord( opt.maketest ) then
maketest := opt.maketest;
elif opt.maketest = true then
maketest := rec( );
fi;
fi;
if IsBound( gapdoc ) then
if not IsBound( gapdoc.main ) then
gapdoc.main := pkg;
fi;
# FIXME: the following may break if a package uses more than one book
if IsBound( package_info.PackageDoc ) and IsBound( package_info.PackageDoc[1].BookName ) then
gapdoc.bookname := package_info.PackageDoc[1].BookName;
elif not is_worksheet then
# Default: book name = package name
gapdoc.bookname := pkg;
Print("\n");
Print("WARNING: PackageInfo.g is missing a PackageDoc entry!\n");
Print("Without this, your package manual will not be recognized by the GAP help system.\n");
Print("You can correct this by adding the following to your PackageInfo.g:\n");
Print("PackageDoc := rec(\n");
Print(" BookName := ~.PackageName,\n");
#Print(" BookName := \"", pkg, "\",\n");
Print(" ArchiveURLSubset := [\"doc\"],\n");
Print(" HTMLStart := \"doc/chap0.html\",\n");
Print(" PDFFile := \"doc/manual.pdf\",\n");
Print(" SixFile := \"doc/manual.six\",\n");
Print(" LongTitle := ~.Subtitle,\n");
Print("),\n");
Print("\n");
fi;
if not IsBound( gapdoc.files ) then
gapdoc.files := [];
fi;
if not IsBound( gapdoc.scan_dirs ) and not is_worksheet then
gapdoc.scan_dirs := [ "gap", "lib", "examples", "examples/doc" ];
fi;
if not is_worksheet then
Append( gapdoc.files, AUTODOC_FindMatchingFiles(pkg, gapdoc.scan_dirs, [ "g", "gi", "gd" ]) );
fi;
# Attempt to weed out duplicates as they may confuse GAPDoc (this
# won't work if there are any non-normalized paths in the list).
gapdoc.files := Set( gapdoc.files );
# Convert the file paths in gapdoc.files, which are relative to
# the package directory, to paths which are relative to the doc directory.
# For this, we assume that doc_dir_rel is normalized (e.g.
# it does not contains '//') and relative.
d := Number( Filename( doc_dir_rel, "" ), x -> x = '/' );
d := Concatenation( ListWithIdenticalEntries(d, "../") );
gapdoc.files := List( gapdoc.files, f -> Concatenation( d, f ) );
fi;
# read tree
# FIXME: shouldn't tree be declared inside of an 'if IsBound(autodoc)' section?
tree := DocumentationTree( );
if IsBound( autodoc ) then
if IsBound( autodoc.section_intros ) then
AUTODOC_PROCESS_INTRO_STRINGS( autodoc.section_intros : Tree := tree );
fi;
AutoDocScanFiles( autodoc.files : PackageName := pkg, Tree := tree );
fi;
if is_worksheet then
# FIXME: We use scaffold and autodoc here without checking whether
# they are bound. Does that mean worksheets always use them?
if IsRecord( scaffold.TitlePage ) and IsBound( scaffold.TitlePage.Title ) then
pkg := scaffold.TitlePage.Title;
elif IsBound( tree!.TitlePage.Title ) then
pkg := tree!.TitlePage.Title;
elif IsBound( autodoc.files ) and Length( autodoc.files ) > 0 then
pkg := autodoc.files[ 1 ];
while Position( pkg, '/' ) <> fail do
Remove( pkg, 1 );
od;
while Position( pkg, '.' ) <> fail do
Remove( pkg, Length( pkg ) );
od;
else
Error( "could not figure out a title." );
fi;
if not IsString( pkg ) then
pkg := JoinStringsWithSeparator( pkg, " " );
fi;
gapdoc.main := ReplacedString( pkg, " ", "_" );
gapdoc.bookname := ReplacedString( pkg, " ", "_" );
fi;
#
# Generate scaffold
#
gapdoc_latex_option_record := rec( );
if IsBound( scaffold ) then
## Syntax is [ "class", [ "options" ] ]
if IsBound( scaffold.document_class ) then
position_document_class := PositionSublist( GAPDoc2LaTeXProcs.Head, "documentclass" );
if IsString( scaffold.document_class ) then
scaffold.document_class := [ scaffold.document_class ];
fi;
if position_document_class = fail then
Error( "something is wrong with the LaTeX header" );
fi;
GAPDoc2LaTeXProcs.Head := Concatenation(
GAPDoc2LaTeXProcs.Head{[ 1 .. PositionSublist( GAPDoc2LaTeXProcs.Head, "{", position_document_class ) ]},
scaffold.document_class[ 1 ],
GAPDoc2LaTeXProcs.Head{[ PositionSublist( GAPDoc2LaTeXProcs.Head, "}", position_document_class ) .. Length( GAPDoc2LaTeXProcs.Head ) ]} );
if Length( scaffold.document_class ) = 2 then
GAPDoc2LaTeXProcs.Head := Concatenation(
GAPDoc2LaTeXProcs.Head{[ 1 .. PositionSublist( GAPDoc2LaTeXProcs.Head, "[", position_document_class ) ]},
scaffold.document_class[ 2 ],
GAPDoc2LaTeXProcs.Head{[ PositionSublist( GAPDoc2LaTeXProcs.Head, "]", position_document_class ) .. Length( GAPDoc2LaTeXProcs.Head ) ]} );
fi;
fi;
if IsBound( scaffold.latex_header_file ) then
GAPDoc2LaTeXProcs.Head := StringFile( scaffold.latex_header_file );
fi;
if IsBound( scaffold.gapdoc_latex_options ) then
if IsRecord( scaffold.gapdoc_latex_options ) then
for i in RecNames( scaffold.gapdoc_latex_options ) do
if not IsString( scaffold.gapdoc_latex_options.( i ) )
and IsList( scaffold.gapdoc_latex_options.( i ) )
and LowercaseString( scaffold.gapdoc_latex_options.( i )[ 1 ] ) = "file" then
scaffold.gapdoc_latex_options.( i ) := StringFile( scaffold.gapdoc_latex_options.( i )[ 2 ] );
fi;
od;
gapdoc_latex_option_record := scaffold.gapdoc_latex_options;
fi;
fi;
if not IsBound( scaffold.includes ) then
scaffold.includes := [ ];
fi;
if IsBound( autodoc ) then
# If scaffold.includes is already set, then we add
# AutoDocMainFile.xml to it, but *only* if it not already
# there. This way, package authors can control where
# it is put in their includes list.
if not "AutoDocMainFile.xml" in scaffold.includes then
Add( scaffold.includes, "AutoDocMainFile.xml" );
fi;
fi;
if IsBound( scaffold.bib ) and IsBool( scaffold.bib ) then
if scaffold.bib = true then
scaffold.bib := Concatenation( pkg, ".bib" );
else
Unbind( scaffold.bib );
fi;
elif not IsBound( scaffold.bib ) then
# If there is a doc/PKG.bib file, assume that we want to reference it in the scaffold.
if IsReadableFile( Filename( doc_dir, Concatenation( pkg, ".bib" ) ) ) then
scaffold.bib := Concatenation( pkg, ".bib" );
fi;
fi;
AUTODOC_WriteOnce( scaffold, "index", true );
if IsBound( gapdoc ) then
if AUTODOC_GetSuffix( gapdoc.main ) = "xml" then
scaffold.main_xml_file := gapdoc.main;
else
scaffold.main_xml_file := Concatenation( gapdoc.main, ".xml" );
fi;
fi;
# TODO: It should be possible to only rebuild the title page. (Perhaps also only the main page? but this is less important)
if IsBound( scaffold.TitlePage ) then
if IsRecord( scaffold.TitlePage ) then
title_page := scaffold.TitlePage;
else
title_page := rec( );
fi;
AUTODOC_WriteOnce( title_page, "dir", doc_dir );
AUTODOC_APPEND_RECORD_WRITEONCE( title_page, tree!.TitlePage );
if not is_worksheet then
AUTODOC_APPEND_RECORD_WRITEONCE( title_page, ExtractTitleInfoFromPackageInfo( pkg ) );
fi;
CreateTitlePage( title_page );
fi;
if IsBound( scaffold.MainPage ) and scaffold.MainPage <> false then
scaffold.dir := doc_dir;
scaffold.book_name := pkg;
CreateMainPage( scaffold );
fi;
fi;
#
# Run AutoDoc
#
if IsBound( autodoc ) then
WriteDocumentation( tree, doc_dir );
fi;
#
# Run GAPDoc
#
if IsBound( gapdoc ) then
# Ask GAPDoc to use UTF-8 as input encoding for LaTeX, as the XML files
# of the documentation are also in UTF-8 encoding, and may contain characters
# not contained in the default Latin 1 encoding.
SetGapDocLaTeXOptions( "utf8", gapdoc_latex_option_record );
MakeGAPDocDoc( doc_dir, gapdoc.main, gapdoc.files, gapdoc.bookname, "MathJax" );
CopyHTMLStyleFiles( Filename( doc_dir, "" ) );
# The following (undocumented) API is there for compatibility
# with old-style gapmacro.tex based package manuals. It
# produces a manual.lab file which those packages can use if
# they wish to link to things in the manual we are currently
# generating. This can probably be removed eventually, but for
# now, doing it does not hurt.
# FIXME: It seems that this command does not work if pdflatex
# is not present. Maybe we should remove it.
if not is_worksheet then
GAPDocManualLab( pkg );
fi;
fi;
if IsBound( maketest ) then
AUTODOC_WriteOnce( maketest, "filename", "maketest.g" );
AUTODOC_WriteOnce( maketest, "folder", pkg_dir );
AUTODOC_WriteOnce( maketest, "scan_dir", doc_dir );
AUTODOC_WriteOnce( maketest, "files_to_scan", gapdoc.files );
if IsString( maketest.folder ) then
maketest.folder := Directory( maketest.folder );
fi;
if IsString( maketest.scan_dir ) then
maketest.scan_dir := Directory( maketest.scan_dir );
fi;
AUTODOC_WriteOnce( maketest, "commands", [ ] );
AUTODOC_WriteOnce( maketest, "book_name", gapdoc.main );
CreateMakeTest( maketest );
fi;
return true;
end );

115
samples/GAP/PackageInfo.g Normal file
View File

@@ -0,0 +1,115 @@
#############################################################################
##
## PackageInfo.g for the package `cvec' Max Neunhoeffer
##
## (created from Frank Lübeck's PackageInfo.g template file)
##
SetPackageInfo( rec(
PackageName := "cvec",
Subtitle := "Compact vectors over finite fields",
Version := "2.5.1",
Date := "04/04/2014", # dd/mm/yyyy format
## Information about authors and maintainers.
Persons := [
rec(
LastName := "Neunhoeffer",
FirstNames := "Max",
IsAuthor := true,
IsMaintainer := false,
Email := "neunhoef@mcs.st-and.ac.uk",
WWWHome := "http://www-groups.mcs.st-and.ac.uk/~neunhoef/",
PostalAddress := Concatenation( [
"School of Mathematics and Statistics\n",
"University of St Andrews\n",
"Mathematical Institute\n",
"North Haugh\n",
"St Andrews, Fife KY16 9SS\n",
"Scotland, UK" ] ),
Place := "St Andrews",
Institution := "University of St Andrews"
),
],
## Status information. Currently the following cases are recognized:
## "accepted" for successfully refereed packages
## "deposited" for packages for which the GAP developers agreed
## to distribute them with the core GAP system
## "dev" for development versions of packages
## "other" for all other packages
##
# Status := "accepted",
Status := "deposited",
## You must provide the next two entries if and only if the status is
## "accepted" because is was successfully refereed:
# format: 'name (place)'
# CommunicatedBy := "Mike Atkinson (St. Andrews)",
#CommunicatedBy := "",
# format: mm/yyyy
# AcceptDate := "08/1999",
#AcceptDate := "",
PackageWWWHome := "http://neunhoef.github.io/cvec/",
README_URL := Concatenation(~.PackageWWWHome, "README"),
PackageInfoURL := Concatenation(~.PackageWWWHome, "PackageInfo.g"),
ArchiveURL := Concatenation("https://github.com/neunhoef/cvec/",
"releases/download/v", ~.Version,
"/cvec-", ~.Version),
ArchiveFormats := ".tar.gz .tar.bz2",
## Here you must provide a short abstract explaining the package content
## in HTML format (used on the package overview Web page) and an URL
## for a Webpage with more detailed information about the package
## (not more than a few lines, less is ok):
## Please, use '<span class="pkgname">GAP</span>' and
## '<span class="pkgname">MyPKG</span>' for specifing package names.
##
AbstractHTML :=
"This package provides an implementation of compact vectors over finite\
fields. Contrary to earlier implementations no table lookups are used\
but only word-based processor arithmetic. This allows for bigger finite\
fields and higher speed.",
PackageDoc := rec(
BookName := "cvec",
ArchiveURLSubset := ["doc"],
HTMLStart := "doc/chap0.html",
PDFFile := "doc/manual.pdf",
SixFile := "doc/manual.six",
LongTitle := "Compact vectors over finite fields",
),
Dependencies := rec(
GAP := ">=4.5.5",
NeededOtherPackages := [
["GAPDoc", ">= 1.2"],
["IO", ">= 4.1"],
["orb", ">= 4.2"],
],
SuggestedOtherPackages := [],
ExternalConditions := []
),
AvailabilityTest := function()
if not "cvec" in SHOW_STAT() and
Filename(DirectoriesPackagePrograms("cvec"), "cvec.so") = fail then
#Info(InfoWarning, 1, "cvec: kernel cvec functions not available.");
return fail;
fi;
return true;
end,
## *Optional*, but recommended: path relative to package root to a file which
## contains as many tests of the package functionality as sensible.
#TestFile := "tst/testall.g",
## *Optional*: Here you can list some keyword related to the topic
## of the package.
Keywords := []
));

23
samples/GAP/example.gd Normal file
View File

@@ -0,0 +1,23 @@
#############################################################################
##
#W example.gd
##
## This file contains a sample of a GAP declaration file.
##
DeclareProperty( "SomeProperty", IsLeftModule );
DeclareGlobalFunction( "SomeGlobalFunction" );
#############################################################################
##
#C IsQuuxFrobnicator(<R>)
##
## <ManSection>
## <Filt Name="IsQuuxFrobnicator" Arg='R' Type='Category'/>
##
## <Description>
## Tests whether R is a quux frobnicator.
## </Description>
## </ManSection>
##
DeclareSynonym( "IsQuuxFrobnicator", IsField and IsGroup );

64
samples/GAP/example.gi Normal file
View File

@@ -0,0 +1,64 @@
#############################################################################
##
#W example.gd
##
## This file contains a sample of a GAP implementation file.
##
#############################################################################
##
#M SomeOperation( <val> )
##
## performs some operation on <val>
##
InstallMethod( SomeProperty,
"for left modules",
[ IsLeftModule ], 0,
function( M )
if IsFreeLeftModule( M ) and not IsTrivial( M ) then
return true;
fi;
TryNextMethod();
end );
#############################################################################
##
#F SomeGlobalFunction( )
##
## A global variadic funfion.
##
InstallGlobalFunction( SomeGlobalFunction, function( arg )
if Length( arg ) = 3 then
return arg[1] + arg[2] * arg[3];
elif Length( arg ) = 2 then
return arg[1] - arg[2]
else
Error( "usage: SomeGlobalFunction( <x>, <y>[, <z>] )" );
fi;
end );
#
# A plain function.
#
SomeFunc := function(x, y)
local z, func, tmp, j;
z := x * 1.0;
y := 17^17 - y;
func := a -> a mod 5;
tmp := List( [1..50], func );
while y > 0 do
for j in tmp do
Print(j, "\n");
od;
repeat
y := y - 1;
until 0 < 1;
y := y -1;
od;
return z;
end;

822
samples/GAP/vspc.gd Normal file
View File

@@ -0,0 +1,822 @@
#############################################################################
##
#W vspc.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for vector spaces.
##
## The operations for bases of free left modules can be found in the file
## <F>lib/basis.gd<F>.
##
#############################################################################
##
#C IsLeftOperatorRing(<R>)
##
## <ManSection>
## <Filt Name="IsLeftOperatorRing" Arg='R' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareSynonym( "IsLeftOperatorRing",
IsLeftOperatorAdditiveGroup and IsRing and IsAssociativeLOpDProd );
#T really?
#############################################################################
##
#C IsLeftOperatorRingWithOne(<R>)
##
## <ManSection>
## <Filt Name="IsLeftOperatorRingWithOne" Arg='R' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareSynonym( "IsLeftOperatorRingWithOne",
IsLeftOperatorAdditiveGroup and IsRingWithOne
and IsAssociativeLOpDProd );
#T really?
#############################################################################
##
#C IsLeftVectorSpace( <V> )
#C IsVectorSpace( <V> )
##
## <#GAPDoc Label="IsLeftVectorSpace">
## <ManSection>
## <Filt Name="IsLeftVectorSpace" Arg='V' Type='Category'/>
## <Filt Name="IsVectorSpace" Arg='V' Type='Category'/>
##
## <Description>
## A <E>vector space</E> in &GAP; is a free left module
## (see&nbsp;<Ref Func="IsFreeLeftModule"/>) over a division ring
## (see Chapter&nbsp;<Ref Chap="Fields and Division Rings"/>).
## <P/>
## Whenever we talk about an <M>F</M>-vector space <A>V</A> then <A>V</A> is
## an additive group (see&nbsp;<Ref Func="IsAdditiveGroup"/>) on which the
## division ring <M>F</M> acts via multiplication from the left such that
## this action and the addition in <A>V</A> are left and right distributive.
## The division ring <M>F</M> can be accessed as value of the attribute
## <Ref Func="LeftActingDomain"/>.
## <P/>
## Vector spaces in &GAP; are always <E>left</E> vector spaces,
## <Ref Filt="IsLeftVectorSpace"/> and <Ref Filt="IsVectorSpace"/> are
## synonyms.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsLeftVectorSpace",
IsLeftModule and IsLeftActedOnByDivisionRing );
DeclareSynonym( "IsVectorSpace", IsLeftVectorSpace );
InstallTrueMethod( IsFreeLeftModule,
IsLeftModule and IsLeftActedOnByDivisionRing );
#############################################################################
##
#F IsGaussianSpace( <V> )
##
## <#GAPDoc Label="IsGaussianSpace">
## <ManSection>
## <Func Name="IsGaussianSpace" Arg='V'/>
##
## <Description>
## The filter <Ref Filt="IsGaussianSpace"/> (see&nbsp;<Ref Sect="Filters"/>)
## for the row space (see&nbsp;<Ref Func="IsRowSpace"/>)
## or matrix space (see&nbsp;<Ref Func="IsMatrixSpace"/>) <A>V</A>
## over the field <M>F</M>, say,
## indicates that the entries of all row vectors or matrices in <A>V</A>,
## respectively, are all contained in <M>F</M>.
## In this case, <A>V</A> is called a <E>Gaussian</E> vector space.
## Bases for Gaussian spaces can be computed using Gaussian elimination for
## a given list of vector space generators.
## <Example><![CDATA[
## gap> mats:= [ [[1,1],[2,2]], [[3,4],[0,1]] ];;
## gap> V:= VectorSpace( Rationals, mats );;
## gap> IsGaussianSpace( V );
## true
## gap> mats[1][1][1]:= E(4);; # an element in an extension field
## gap> V:= VectorSpace( Rationals, mats );;
## gap> IsGaussianSpace( V );
## false
## gap> V:= VectorSpace( Field( Rationals, [ E(4) ] ), mats );;
## gap> IsGaussianSpace( V );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "IsGaussianSpace", IsVectorSpace );
InstallTrueMethod( IsGaussianSpace,
IsVectorSpace and IsFullMatrixModule );
InstallTrueMethod( IsGaussianSpace,
IsVectorSpace and IsFullRowModule );
#############################################################################
##
#C IsDivisionRing( <D> )
##
## <#GAPDoc Label="IsDivisionRing">
## <ManSection>
## <Filt Name="IsDivisionRing" Arg='D' Type='Category'/>
##
## <Description>
## A <E>division ring</E> in &GAP; is a nontrivial associative algebra
## <A>D</A> with a multiplicative inverse for each nonzero element.
## In &GAP; every division ring is a vector space over a division ring
## (possibly over itself).
## Note that being a division ring is thus not a property that a ring can
## get, because a ring is usually not represented as a vector space.
## <P/>
## The field of coefficients is stored as the value of the attribute
## <Ref Func="LeftActingDomain"/> of <A>D</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsDivisionRing",
IsMagmaWithInversesIfNonzero
and IsLeftOperatorRingWithOne
and IsLeftVectorSpace
and IsNonTrivial
and IsAssociative
and IsEuclideanRing );
#############################################################################
##
#A GeneratorsOfLeftVectorSpace( <V> )
#A GeneratorsOfVectorSpace( <V> )
##
## <#GAPDoc Label="GeneratorsOfLeftVectorSpace">
## <ManSection>
## <Attr Name="GeneratorsOfLeftVectorSpace" Arg='V'/>
## <Attr Name="GeneratorsOfVectorSpace" Arg='V'/>
##
## <Description>
## For an <M>F</M>-vector space <A>V</A>,
## <Ref Attr="GeneratorsOfLeftVectorSpace"/> returns a list of vectors in
## <A>V</A> that generate <A>V</A> as an <M>F</M>-vector space.
## <Example><![CDATA[
## gap> GeneratorsOfVectorSpace( FullRowSpace( Rationals, 3 ) );
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfLeftVectorSpace",
GeneratorsOfLeftOperatorAdditiveGroup );
DeclareSynonymAttr( "GeneratorsOfVectorSpace",
GeneratorsOfLeftOperatorAdditiveGroup );
#############################################################################
##
#A CanonicalBasis( <V> )
##
## <#GAPDoc Label="CanonicalBasis">
## <ManSection>
## <Attr Name="CanonicalBasis" Arg='V'/>
##
## <Description>
## If the vector space <A>V</A> supports a <E>canonical basis</E> then
## <Ref Attr="CanonicalBasis"/> returns this basis,
## otherwise <K>fail</K> is returned.
## <P/>
## The defining property of a canonical basis is that its vectors are
## uniquely determined by the vector space.
## If canonical bases exist for two vector spaces over the same left acting
## domain (see&nbsp;<Ref Func="LeftActingDomain"/>) then the equality of
## these vector spaces can be decided by comparing the canonical bases.
## <P/>
## The exact meaning of a canonical basis depends on the type of <A>V</A>.
## Canonical bases are defined for example for Gaussian row and matrix
## spaces (see&nbsp;<Ref Sect="Row and Matrix Spaces"/>).
## <P/>
## If one designs a new kind of vector spaces
## (see&nbsp;<Ref Sect="How to Implement New Kinds of Vector Spaces"/>) and
## defines a canonical basis for these spaces then the
## <Ref Attr="CanonicalBasis"/> method one installs
## (see&nbsp;<Ref Func="InstallMethod"/>)
## must <E>not</E> call <Ref Func="Basis"/>.
## On the other hand, one probably should install a <Ref Func="Basis"/>
## method that simply calls <Ref Attr="CanonicalBasis"/>,
## the value of the method
## (see&nbsp;<Ref Sect="Method Installation"/> and
## <Ref Sect="Applicable Methods and Method Selection"/>)
## being <C>CANONICAL_BASIS_FLAGS</C>.
## <Example><![CDATA[
## gap> vecs:= [ [ 1, 2, 3 ], [ 1, 1, 1 ], [ 1, 1, 1 ] ];;
## gap> V:= VectorSpace( Rationals, vecs );;
## gap> B:= CanonicalBasis( V );
## CanonicalBasis( <vector space over Rationals, with 3 generators> )
## gap> BasisVectors( B );
## [ [ 1, 0, -1 ], [ 0, 1, 2 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CanonicalBasis", IsFreeLeftModule );
#############################################################################
##
#F IsRowSpace( <V> )
##
## <#GAPDoc Label="IsRowSpace">
## <ManSection>
## <Func Name="IsRowSpace" Arg='V'/>
##
## <Description>
## A <E>row space</E> in &GAP; is a vector space that consists of
## row vectors (see Chapter&nbsp;<Ref Chap="Row Vectors"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRowSpace", IsRowModule and IsVectorSpace );
#############################################################################
##
#F IsGaussianRowSpace( <V> )
##
## <ManSection>
## <Func Name="IsGaussianRowSpace" Arg='V'/>
##
## <Description>
## A row space is <E>Gaussian</E> if the left acting domain contains all
## scalars that occur in the vectors.
## Thus one can use Gaussian elimination in the calculations.
## <P/>
## (Otherwise the space is non-Gaussian.
## We will need a flag for this to write down methods that delegate from
## non-Gaussian spaces to Gaussian ones.)
## <!-- reformulate this when it becomes documented -->
## </Description>
## </ManSection>
##
DeclareSynonym( "IsGaussianRowSpace", IsGaussianSpace and IsRowSpace );
#############################################################################
##
#F IsNonGaussianRowSpace( <V> )
##
## <ManSection>
## <Func Name="IsNonGaussianRowSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Func="IsNonGaussianRowSpace"/> then this expresses that <A>V</A>
## consists of row vectors (see&nbsp;<Ref Func="IsRowVector"/>) such
## that not all entries in these row vectors are contained in <M>F</M>
## (so Gaussian elimination cannot be used to compute an <M>F</M>-basis
## from a list of vector space generators),
## and that <A>V</A> is handled via the mechanism of nice bases
## (see&nbsp;<Ref ???="..."/>) in the following way.
## Let <M>K</M> be the field spanned by the entries of all vectors in
## <A>V</A>.
## Then the <Ref Attr="NiceFreeLeftModuleInfo"/> value of <A>V</A> is
## a basis <M>B</M> of the field extension <M>K / ( K \cap F )</M>,
## and the <Ref Func="NiceVector"/> value of <M>v \in <A>V</A></M>
## is defined by replacing each entry of <M>v</M> by the list of its
## <M>B</M>-coefficients, and then forming the concatenation.
## <P/>
## So the associated nice vector space is a Gaussian row space
## (see&nbsp;<Ref Func="IsGaussianRowSpace"/>).
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsNonGaussianRowSpace",
"for non-Gaussian row spaces" );
#############################################################################
##
#F IsMatrixSpace( <V> )
##
## <#GAPDoc Label="IsMatrixSpace">
## <ManSection>
## <Func Name="IsMatrixSpace" Arg='V'/>
##
## <Description>
## A <E>matrix space</E> in &GAP; is a vector space that consists of matrices
## (see Chapter&nbsp;<Ref Chap="Matrices"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsMatrixSpace", IsMatrixModule and IsVectorSpace );
#############################################################################
##
#F IsGaussianMatrixSpace( <V> )
##
## <ManSection>
## <Func Name="IsGaussianMatrixSpace" Arg='V'/>
##
## <Description>
## A matrix space is Gaussian if the left acting domain contains all
## scalars that occur in the vectors.
## Thus one can use Gaussian elimination in the calculations.
## <P/>
## (Otherwise the space is non-Gaussian.
## We will need a flag for this to write down methods that delegate from
## non-Gaussian spaces to Gaussian ones.)
## </Description>
## </ManSection>
##
DeclareSynonym( "IsGaussianMatrixSpace", IsGaussianSpace and IsMatrixSpace );
#############################################################################
##
#F IsNonGaussianMatrixSpace( <V> )
##
## <ManSection>
## <Func Name="IsNonGaussianMatrixSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Func="IsNonGaussianMatrixSpace"/>
## then this expresses that <A>V</A> consists of matrices
## (see&nbsp;<Ref Func="IsMatrix"/>)
## such that not all entries in these matrices are contained in <M>F</M>
## (so Gaussian elimination cannot be used to compute an <M>F</M>-basis
## from a list of vector space generators),
## and that <A>V</A> is handled via the mechanism of nice bases
## (see&nbsp;<Ref ???="..."/>) in the following way.
## Let <M>K</M> be the field spanned by the entries of all vectors in <A>V</A>.
## The <Ref Attr="NiceFreeLeftModuleInfo"/> value of <A>V</A> is irrelevant,
## and the <Ref Func="NiceVector"/> value of <M>v \in <A>V</A></M>
## is defined as the concatenation of the rows of <M>v</M>.
## <P/>
## So the associated nice vector space is a (not necessarily Gaussian)
## row space (see&nbsp;<Ref Func="IsRowSpace"/>).
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsNonGaussianMatrixSpace",
"for non-Gaussian matrix spaces" );
#############################################################################
##
#A NormedRowVectors( <V> ) . . . normed vectors in a Gaussian row space <V>
##
## <#GAPDoc Label="NormedRowVectors">
## <ManSection>
## <Attr Name="NormedRowVectors" Arg='V'/>
##
## <Description>
## For a finite Gaussian row space <A>V</A>
## (see&nbsp;<Ref Func="IsRowSpace"/>, <Ref Func="IsGaussianSpace"/>),
## <Ref Attr="NormedRowVectors"/> returns a list of those nonzero
## vectors in <A>V</A> that have a one in the first nonzero component.
## <P/>
## The result list can be used as action domain for the action of a matrix
## group via <Ref Func="OnLines"/>, which yields the natural action on
## one-dimensional subspaces of <A>V</A>
## (see also&nbsp;<Ref Func="Subspaces"/>).
## <Example><![CDATA[
## gap> vecs:= NormedRowVectors( GF(3)^2 );
## [ [ 0*Z(3), Z(3)^0 ], [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3)^0 ],
## [ Z(3)^0, Z(3) ] ]
## gap> Action( GL(2,3), vecs, OnLines );
## Group([ (3,4), (1,2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NormedRowVectors", IsGaussianSpace );
#############################################################################
##
#A TrivialSubspace( <V> )
##
## <#GAPDoc Label="TrivialSubspace">
## <ManSection>
## <Attr Name="TrivialSubspace" Arg='V'/>
##
## <Description>
## For a vector space <A>V</A>, <Ref Attr="TrivialSubspace"/> returns the
## subspace of <A>V</A> that consists of the zero vector in <A>V</A>.
## <Example><![CDATA[
## gap> V:= GF(3)^3;;
## gap> triv:= TrivialSubspace( V );
## <vector space over GF(3), with 0 generators>
## gap> AsSet( triv );
## [ [ 0*Z(3), 0*Z(3), 0*Z(3) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "TrivialSubspace", TrivialSubmodule );
#############################################################################
##
#F VectorSpace( <F>, <gens>[, <zero>][, "basis"] )
##
## <#GAPDoc Label="VectorSpace">
## <ManSection>
## <Func Name="VectorSpace" Arg='F, gens[, zero][, "basis"]'/>
##
## <Description>
## For a field <A>F</A> and a collection <A>gens</A> of vectors,
## <Ref Func="VectorSpace"/> returns the <A>F</A>-vector space spanned by
## the elements in <A>gens</A>.
## <P/>
## The optional argument <A>zero</A> can be used to specify the zero element
## of the space; <A>zero</A> <E>must</E> be given if <A>gens</A> is empty.
## The optional string <C>"basis"</C> indicates that <A>gens</A> is known to
## be linearly independent over <A>F</A>, in particular the dimension of the
## vector space is immediately set;
## note that <Ref Func="Basis"/> need <E>not</E> return the basis formed by
## <A>gens</A> if the string <C>"basis"</C> is given as an argument.
## <!-- crossref. to <C>FreeLeftModule</C> as soon as the modules chapter
## is reliable!-->
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );
## <vector space over Rationals, with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "VectorSpace" );
#############################################################################
##
#F Subspace( <V>, <gens>[, "basis"] ) . subspace of <V> generated by <gens>
#F SubspaceNC( <V>, <gens>[, "basis"] )
##
## <#GAPDoc Label="Subspace">
## <ManSection>
## <Func Name="Subspace" Arg='V, gens[, "basis"]'/>
## <Func Name="SubspaceNC" Arg='V, gens[, "basis"]'/>
##
## <Description>
## For an <M>F</M>-vector space <A>V</A> and a list or collection
## <A>gens</A> that is a subset of <A>V</A>,
## <Ref Func="Subspace"/> returns the <M>F</M>-vector space spanned by
## <A>gens</A>; if <A>gens</A> is empty then the trivial subspace
## (see&nbsp;<Ref Func="TrivialSubspace"/>) of <A>V</A> is returned.
## The parent (see&nbsp;<Ref Sect="Parents"/>) of the returned vector space
## is set to <A>V</A>.
## <P/>
## <Ref Func="SubspaceNC"/> does the same as <Ref Func="Subspace"/>,
## except that it omits the check whether <A>gens</A> is a subset of
## <A>V</A>.
## <P/>
## The optional string <A>"basis"</A> indicates that <A>gens</A> is known to
## be linearly independent over <M>F</M>.
## In this case the dimension of the subspace is immediately set,
## and both <Ref Func="Subspace"/> and <Ref Func="SubspaceNC"/> do
## <E>not</E> check whether <A>gens</A> really is linearly independent and
## whether <A>gens</A> is a subset of <A>V</A>.
## <!-- crossref. to <C>Submodule</C> as soon as the modules chapter
## is reliable!-->
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );;
## gap> W:= Subspace( V, [ [ 0, 1, 2 ] ] );
## <vector space over Rationals, with 1 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "Subspace", Submodule );
DeclareSynonym( "SubspaceNC", SubmoduleNC );
#############################################################################
##
#O AsVectorSpace( <F>, <D> ) . . . . . . . . . view <D> as <F>-vector space
##
## <#GAPDoc Label="AsVectorSpace">
## <ManSection>
## <Oper Name="AsVectorSpace" Arg='F, D'/>
##
## <Description>
## Let <A>F</A> be a division ring and <A>D</A> a domain.
## If the elements in <A>D</A> form an <A>F</A>-vector space then
## <Ref Oper="AsVectorSpace"/> returns this <A>F</A>-vector space,
## otherwise <K>fail</K> is returned.
## <P/>
## <Ref Oper="AsVectorSpace"/> can be used for example to view a given
## vector space as a vector space over a smaller or larger division ring.
## <Example><![CDATA[
## gap> V:= FullRowSpace( GF( 27 ), 3 );
## ( GF(3^3)^3 )
## gap> Dimension( V ); LeftActingDomain( V );
## 3
## GF(3^3)
## gap> W:= AsVectorSpace( GF( 3 ), V );
## <vector space over GF(3), with 9 generators>
## gap> Dimension( W ); LeftActingDomain( W );
## 9
## GF(3)
## gap> AsVectorSpace( GF( 9 ), V );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "AsVectorSpace", AsLeftModule );
#############################################################################
##
#O AsSubspace( <V>, <U> ) . . . . . . . . . . . view <U> as subspace of <V>
##
## <#GAPDoc Label="AsSubspace">
## <ManSection>
## <Oper Name="AsSubspace" Arg='V, U'/>
##
## <Description>
## Let <A>V</A> be an <M>F</M>-vector space, and <A>U</A> a collection.
## If <A>U</A> is a subset of <A>V</A> such that the elements of <A>U</A>
## form an <M>F</M>-vector space then <Ref Oper="AsSubspace"/> returns this
## vector space, with parent set to <A>V</A>
## (see&nbsp;<Ref Func="AsVectorSpace"/>).
## Otherwise <K>fail</K> is returned.
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );;
## gap> W:= VectorSpace( Rationals, [ [ 1/2, 1/2, 1/2 ] ] );;
## gap> U:= AsSubspace( V, W );
## <vector space over Rationals, with 1 generators>
## gap> Parent( U ) = V;
## true
## gap> AsSubspace( V, [ [ 1, 1, 1 ] ] );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsSubspace", [ IsVectorSpace, IsCollection ] );
#############################################################################
##
#F Intersection2Spaces( <AsStruct>, <Substruct>, <Struct> )
##
## <ManSection>
## <Func Name="Intersection2Spaces" Arg='AsStruct, Substruct, Struct'/>
##
## <Description>
## is a function that takes two arguments <A>V</A> and <A>W</A> which must
## be finite dimensional vector spaces,
## and returns the intersection of <A>V</A> and <A>W</A>.
## <P/>
## If the left acting domains are different then let <M>F</M> be their
## intersection.
## The intersection of <A>V</A> and <A>W</A> is computed as intersection of
## <C><A>AsStruct</A>( <A>F</A>, <A>V</A> )</C> and
## <C><A>AsStruct</A>( <A>F</A>, <A>V</A> )</C>.
## <P/>
## If the left acting domains are equal to <M>F</M> then the intersection of
## <A>V</A> and <A>W</A> is returned either as <M>F</M>-<A>Substruct</A>
## with the common parent of <A>V</A> and <A>W</A> or as
## <M>F</M>-<A>Struct</A>, in both cases with known basis.
## <P/>
## This function is used to handle the intersections of two vector spaces,
## two algebras, two algebras-with-one, two left ideals, two right ideals,
## two two-sided ideals.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "Intersection2Spaces" );
#############################################################################
##
#F FullRowSpace( <F>, <n> )
##
## <#GAPDoc Label="FullRowSpace">
## <ManSection>
## <Func Name="FullRowSpace" Arg='F, n'/>
## <Meth Name="\^" Arg='F, n' Label="for a field and an integer"/>
##
## <Description>
## For a field <A>F</A> and a nonnegative integer <A>n</A>,
## <Ref Func="FullRowSpace"/> returns the <A>F</A>-vector space that
## consists of all row vectors (see&nbsp;<Ref Func="IsRowVector"/>) of
## length <A>n</A> with entries in <A>F</A>.
## <P/>
## An alternative to construct this vector space is via
## <A>F</A><C>^</C><A>n</A>.
## <Example><![CDATA[
## gap> FullRowSpace( GF( 9 ), 3 );
## ( GF(3^2)^3 )
## gap> GF(9)^3; # the same as above
## ( GF(3^2)^3 )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "FullRowSpace", FullRowModule );
DeclareSynonym( "RowSpace", FullRowModule );
#############################################################################
##
#F FullMatrixSpace( <F>, <m>, <n> )
##
## <#GAPDoc Label="FullMatrixSpace">
## <ManSection>
## <Func Name="FullMatrixSpace" Arg='F, m, n'/>
## <Meth Name="\^" Arg='F, dims'
## Label="for a field and a pair of integers"/>
##
## <Description>
## For a field <A>F</A> and two positive integers <A>m</A> and <A>n</A>,
## <Ref Func="FullMatrixSpace"/> returns the <A>F</A>-vector space that
## consists of all <A>m</A> by <A>n</A> matrices
## (see&nbsp;<Ref Func="IsMatrix"/>) with entries in <A>F</A>.
## <P/>
## If <A>m</A><C> = </C><A>n</A> then the result is in fact an algebra
## (see&nbsp;<Ref Func="FullMatrixAlgebra"/>).
## <P/>
## An alternative to construct this vector space is via
## <A>F</A><C>^[</C><A>m</A>,<A>n</A><C>]</C>.
## <Example><![CDATA[
## gap> FullMatrixSpace( GF(2), 4, 5 );
## ( GF(2)^[ 4, 5 ] )
## gap> GF(2)^[ 4, 5 ]; # the same as above
## ( GF(2)^[ 4, 5 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "FullMatrixSpace", FullMatrixModule );
DeclareSynonym( "MatrixSpace", FullMatrixModule );
DeclareSynonym( "MatSpace", FullMatrixModule );
#############################################################################
##
#C IsSubspacesVectorSpace( <D> )
##
## <#GAPDoc Label="IsSubspacesVectorSpace">
## <ManSection>
## <Filt Name="IsSubspacesVectorSpace" Arg='D' Type='Category'/>
##
## <Description>
## The domain of all subspaces of a (finite) vector space or of all
## subspaces of fixed dimension, as returned by <Ref Func="Subspaces"/>
## (see&nbsp;<Ref Func="Subspaces"/>) lies in the category
## <Ref Filt="IsSubspacesVectorSpace"/>.
## <Example><![CDATA[
## gap> D:= Subspaces( GF(3)^3 );
## Subspaces( ( GF(3)^3 ) )
## gap> Size( D );
## 28
## gap> iter:= Iterator( D );;
## gap> NextIterator( iter );
## <vector space over GF(3), with 0 generators>
## gap> NextIterator( iter );
## <vector space of dimension 1 over GF(3)>
## gap> IsSubspacesVectorSpace( D );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsSubspacesVectorSpace", IsDomain );
#############################################################################
##
#M IsFinite( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
## Returns `true' if <D> is finite.
## We allow subspaces domains in `IsSubspacesVectorSpace' only for finite
## vector spaces.
##
InstallTrueMethod( IsFinite, IsSubspacesVectorSpace );
#############################################################################
##
#A Subspaces( <V>[, <k>] )
##
## <#GAPDoc Label="Subspaces">
## <ManSection>
## <Attr Name="Subspaces" Arg='V[, k]'/>
##
## <Description>
## Called with a finite vector space <A>v</A>,
## <Ref Oper="Subspaces"/> returns the domain of all subspaces of <A>V</A>.
## <P/>
## Called with <A>V</A> and a nonnegative integer <A>k</A>,
## <Ref Oper="Subspaces"/> returns the domain of all <A>k</A>-dimensional
## subspaces of <A>V</A>.
## <P/>
## Special <Ref Attr="Size"/> and <Ref Oper="Iterator"/> methods are
## provided for these domains.
## <!-- <C>Enumerator</C> would also be good ...
## (special treatment for full row spaces,
## other spaces delegate to this)-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Subspaces", IsLeftModule );
DeclareOperation( "Subspaces", [ IsLeftModule, IsInt ] );
#############################################################################
##
#F IsSubspace( <V>, <U> )
##
## <ManSection>
## <Func Name="IsSubspace" Arg='V, U'/>
##
## <Description>
## check that <A>U</A> is a vector space that is contained in <A>V</A>
## <!-- Must also <A>V</A> be a vector space?
## If yes then must <A>V</A> and <A>U</A> have same left acting domain?
## (Is this function useful at all?) -->
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "IsSubspace" );
#############################################################################
##
#A OrthogonalSpaceInFullRowSpace( <U> )
##
## <ManSection>
## <Attr Name="OrthogonalSpaceInFullRowSpace" Arg='U'/>
##
## <Description>
## For a Gaussian row space <A>U</A> over <M>F</M>,
## <Ref Attr="OrthogonalSpaceInFullRowSpace"/>
## returns a complement of <A>U</A> in the full row space of same vector
## dimension as <A>U</A> over <M>F</M>.
## </Description>
## </ManSection>
##
DeclareAttribute( "OrthogonalSpaceInFullRowSpace", IsGaussianSpace );
#############################################################################
##
#P IsVectorSpaceHomomorphism( <map> )
##
## <ManSection>
## <Prop Name="IsVectorSpaceHomomorphism" Arg='map'/>
##
## <Description>
## A mapping <M>f</M> is a vector space homomorphism (or linear mapping)
## if the source and range are vector spaces
## (see&nbsp;<Ref Func="IsVectorSpace"/>)
## over the same division ring <M>D</M>
## (see&nbsp;<Ref Func="LeftActingDomain"/>),
## and if <M>f( a + b ) = f(a) + f(b)</M> and <M>f( s * a ) = s * f(a)</M>
## hold for all elements <M>a</M>, <M>b</M> in the source of <M>f</M> and
## <M>s \in D</M>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsVectorSpaceHomomorphism", IsGeneralMapping );
#############################################################################
##
#E

651
samples/GAP/vspc.gi Normal file
View File

@@ -0,0 +1,651 @@
#############################################################################
##
#W vspc.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for vector spaces.
##
#############################################################################
##
#M SetLeftActingDomain( <extL>, <D> )
##
## check whether the left acting domain <D> of the external left set <extL>
## knows that it is a division ring.
## This is used, e.g., to tell a free module over a division ring
## that it is a vector space.
##
InstallOtherMethod( SetLeftActingDomain,
"method to set also 'IsLeftActedOnByDivisionRing'",
[ IsAttributeStoringRep and IsLeftActedOnByRing, IsObject ],0,
function( extL, D )
if HasIsDivisionRing( D ) and IsDivisionRing( D ) then
SetIsLeftActedOnByDivisionRing( extL, true );
fi;
TryNextMethod();
end );
#############################################################################
##
#M IsLeftActedOnByDivisionRing( <M> )
##
InstallMethod( IsLeftActedOnByDivisionRing,
"method for external left set that is left acted on by a ring",
[ IsExtLSet and IsLeftActedOnByRing ],
function( M )
if IsIdenticalObj( M, LeftActingDomain( M ) ) then
TryNextMethod();
else
return IsDivisionRing( LeftActingDomain( M ) );
fi;
end );
#############################################################################
##
#F VectorSpace( <F>, <gens>[, <zero>][, "basis"] )
##
## The only difference between `VectorSpace' and `FreeLeftModule' shall be
## that the left acting domain of a vector space must be a division ring.
##
InstallGlobalFunction( VectorSpace, function( arg )
if Length( arg ) = 0 or not IsDivisionRing( arg[1] ) then
Error( "usage: VectorSpace( <F>, <gens>[, <zero>][, \"basis\"] )" );
fi;
return CallFuncList( FreeLeftModule, arg );
end );
#############################################################################
##
#M AsSubspace( <V>, <C> ) . . . . . . . for a vector space and a collection
##
InstallMethod( AsSubspace,
"for a vector space and a collection",
[ IsVectorSpace, IsCollection ],
function( V, C )
local newC;
if not IsSubset( V, C ) then
return fail;
fi;
newC:= AsVectorSpace( LeftActingDomain( V ), C );
if newC = fail then
return fail;
fi;
SetParent( newC, V );
UseIsomorphismRelation( C, newC );
UseSubsetRelation( C, newC );
return newC;
end );
#############################################################################
##
#M AsLeftModule( <F>, <V> ) . . . . . . for division ring and vector space
##
## View the vector space <V> as a vector space over the division ring <F>.
##
InstallMethod( AsLeftModule,
"method for a division ring and a vector space",
[ IsDivisionRing, IsVectorSpace ],
function( F, V )
local W, # the space, result
base, # basis vectors of field extension
gen, # loop over generators of 'V'
b, # loop over 'base'
gens, # generators of 'V'
newgens; # extended list of generators
if Characteristic( F ) <> Characteristic( LeftActingDomain( V ) ) then
# This is impossible.
return fail;
elif F = LeftActingDomain( V ) then
# No change of the left acting domain is necessary.
return V;
elif IsSubset( F, LeftActingDomain( V ) ) then
# Check whether 'V' is really a space over the bigger field,
# that is, whether the set of elements does not change.
base:= BasisVectors( Basis( AsField( LeftActingDomain( V ), F ) ) );
for gen in GeneratorsOfLeftModule( V ) do
for b in base do
if not b * gen in V then
# The field extension would change the set of elements.
return fail;
fi;
od;
od;
# Construct the space.
W:= LeftModuleByGenerators( F, GeneratorsOfLeftModule(V), Zero(V) );
elif IsSubset( LeftActingDomain( V ), F ) then
# View 'V' as a space over a smaller field.
# For that, the list of generators must be extended.
gens:= GeneratorsOfLeftModule( V );
if IsEmpty( gens ) then
W:= LeftModuleByGenerators( F, [], Zero( V ) );
else
base:= BasisVectors( Basis( AsField( F, LeftActingDomain( V ) ) ) );
newgens:= [];
for b in base do
for gen in gens do
Add( newgens, b * gen );
od;
od;
W:= LeftModuleByGenerators( F, newgens );
fi;
else
# View 'V' first as space over the intersection of fields,
# and then over the desired field.
return AsLeftModule( F,
AsLeftModule( Intersection( F,
LeftActingDomain( V ) ), V ) );
fi;
UseIsomorphismRelation( V, W );
UseSubsetRelation( V, W );
return W;
end );
#############################################################################
##
#M ViewObj( <V> ) . . . . . . . . . . . . . . . . . . . view a vector space
##
## print left acting domain, if known also dimension or no. of generators
##
InstallMethod( ViewObj,
"for vector space with known generators",
[ IsVectorSpace and HasGeneratorsOfLeftModule ],
function( V )
Print( "<vector space over ", LeftActingDomain( V ), ", with ",
Length( GeneratorsOfLeftModule( V ) ), " generators>" );
end );
InstallMethod( ViewObj,
"for vector space with known dimension",
[ IsVectorSpace and HasDimension ],
1, # override method for known generators
function( V )
Print( "<vector space of dimension ", Dimension( V ),
" over ", LeftActingDomain( V ), ">" );
end );
InstallMethod( ViewObj,
"for vector space",
[ IsVectorSpace ],
function( V )
Print( "<vector space over ", LeftActingDomain( V ), ">" );
end );
#############################################################################
##
#M PrintObj( <V> ) . . . . . . . . . . . . . . . . . . . for a vector space
##
InstallMethod( PrintObj,
"method for vector space with left module generators",
[ IsVectorSpace and HasGeneratorsOfLeftModule ],
function( V )
Print( "VectorSpace( ", LeftActingDomain( V ), ", ",
GeneratorsOfLeftModule( V ) );
if IsEmpty( GeneratorsOfLeftModule( V ) ) and HasZero( V ) then
Print( ", ", Zero( V ), " )" );
else
Print( " )" );
fi;
end );
InstallMethod( PrintObj,
"method for vector space",
[ IsVectorSpace ],
function( V )
Print( "VectorSpace( ", LeftActingDomain( V ), ", ... )" );
end );
#############################################################################
##
#M \/( <V>, <W> ) . . . . . . . . . factor of a vector space by a subspace
#M \/( <V>, <vectors> ) . . . . . . factor of a vector space by a subspace
##
InstallOtherMethod( \/,
"method for vector space and collection",
IsIdenticalObj,
[ IsVectorSpace, IsCollection ],
function( V, vectors )
if IsVectorSpace( vectors ) then
TryNextMethod();
else
return V / Subspace( V, vectors );
fi;
end );
InstallOtherMethod( \/,
"generic method for two vector spaces",
IsIdenticalObj,
[ IsVectorSpace, IsVectorSpace ],
function( V, W )
return ImagesSource( NaturalHomomorphismBySubspace( V, W ) );
end );
#############################################################################
##
#M Intersection2Spaces( <AsStruct>, <Substruct>, <Struct> )
##
InstallGlobalFunction( Intersection2Spaces,
function( AsStructure, Substructure, Structure )
return function( V, W )
local inters, # intersection, result
F, # coefficients field
gensV, # list of generators of 'V'
gensW, # list of generators of 'W'
VW, # sum of 'V' and 'W'
B; # basis of 'VW'
if LeftActingDomain( V ) <> LeftActingDomain( W ) then
# Compute the intersection as vector space over the intersection
# of the coefficients fields.
# (Note that the characteristic is the same.)
F:= Intersection2( LeftActingDomain( V ), LeftActingDomain( W ) );
return Intersection2( AsStructure( F, V ), AsStructure( F, W ) );
elif IsFiniteDimensional( V ) and IsFiniteDimensional( W ) then
# Compute the intersection of two spaces over the same field.
gensV:= GeneratorsOfLeftModule( V );
gensW:= GeneratorsOfLeftModule( W );
if IsEmpty( gensV ) then
if Zero( V ) in W then
inters:= V;
else
inters:= [];
fi;
elif IsEmpty( gensW ) then
if Zero( V ) in W then
inters:= W;
else
inters:= [];
fi;
else
# Compute a common coefficient space.
VW:= LeftModuleByGenerators( LeftActingDomain( V ),
Concatenation( gensV, gensW ) );
B:= Basis( VW );
# Construct the coefficient subspaces corresponding to 'V' and 'W'.
gensV:= List( gensV, x -> Coefficients( B, x ) );
gensW:= List( gensW, x -> Coefficients( B, x ) );
# Construct the intersection of row spaces, and carry back to VW.
inters:= List( SumIntersectionMat( gensV, gensW )[2],
x -> LinearCombination( B, x ) );
# Construct the intersection space, if possible with a parent.
if HasParent( V ) and HasParent( W )
and IsIdenticalObj( Parent( V ), Parent( W ) ) then
inters:= Substructure( Parent( V ), inters, "basis" );
elif IsEmpty( inters ) then
inters:= Substructure( V, inters, "basis" );
SetIsTrivial( inters, true );
else
inters:= Structure( LeftActingDomain( V ), inters, "basis" );
fi;
# Run implications by the subset relation.
UseSubsetRelation( V, inters );
UseSubsetRelation( W, inters );
fi;
# Return the result.
return inters;
else
TryNextMethod();
fi;
end;
end );
#############################################################################
##
#M Intersection2( <V>, <W> ) . . . . . . . . . . . . . for two vector spaces
##
InstallMethod( Intersection2,
"method for two vector spaces",
IsIdenticalObj,
[ IsVectorSpace, IsVectorSpace ],
Intersection2Spaces( AsLeftModule, SubspaceNC, VectorSpace ) );
#############################################################################
##
#M ClosureLeftModule( <V>, <a> ) . . . . . . . . . closure of a vector space
##
InstallMethod( ClosureLeftModule,
"method for a vector space with basis, and a vector",
IsCollsElms,
[ IsVectorSpace and HasBasis, IsVector ],
function( V, w )
local B; # basis of 'V'
# We can test membership easily.
B:= Basis( V );
#T why easily?
if Coefficients( B, w ) = fail then
# In the case of a vector space, we know a basis of the closure.
B:= Concatenation( BasisVectors( B ), [ w ] );
V:= LeftModuleByGenerators( LeftActingDomain( V ), B );
UseBasis( V, B );
fi;
return V;
end );
#############################################################################
##
## Methods for collections of subspaces of a vector space
##
#############################################################################
##
#R IsSubspacesVectorSpaceDefaultRep( <D> )
##
## is the representation of domains of subspaces of a vector space <V>,
## with the components 'structure' (with value <V>) and 'dimension'
## (with value either the dimension of the subspaces in the domain
## or the string '\"all\"', which means that the domain contains all
## subspaces of <V>).
##
DeclareRepresentation(
"IsSubspacesVectorSpaceDefaultRep",
IsComponentObjectRep,
[ "dimension", "structure" ] );
#T not IsAttributeStoringRep?
#############################################################################
##
#M PrintObj( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
InstallMethod( PrintObj,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
if IsInt( D!.dimension ) then
Print( "Subspaces( ", D!.structure, ", ", D!.dimension, " )" );
else
Print( "Subspaces( ", D!.structure, " )" );
fi;
end );
#############################################################################
##
#M Size( <D> ) . . . . . . . . . . . . . . . . . . . for a subspaces domain
##
## The number of $k$-dimensional subspaces in a $n$-dimensional space over
## the field with $q$ elements is
## $$
## a(n,k) = \prod_{i=0}^{k-1} \frac{q^n-q^i}{q^k-q^i} =
## \prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1}.
## $$
## We have the recursion
## $$
## a(n,k+1) = a(n,k) \frac{q^{n-i}-1}{q^{i+1}-1}.
## $$
##
## (The number of all subspaces is $\sum_{k=0}^n a(n,k)$.)
##
InstallMethod( Size,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local k,
n,
q,
size,
qn,
qd,
ank,
i;
if D!.dimension = "all" then
# all subspaces of the space
n:= Dimension( D!.structure );
q:= Size( LeftActingDomain( D!.structure ) );
size:= 1;
qn:= q^n;
qd:= q;
# $a(n,0)$
ank:= 1;
for k in [ 1 .. Int( (n-1)/2 ) ] do
# Compute $a(n,k)$.
ank:= ank * ( qn - 1 ) / ( qd - 1 );
qn:= qn / q;
qd:= qd * q;
size:= size + ank;
od;
size:= 2 * size;
if n mod 2 = 0 then
# Add the number of spaces of dimension $n/2$.
size:= size + ank * ( qn - 1 ) / ( qd - 1 );
fi;
else
# number of spaces of dimension 'k' only
n:= Dimension( D!.structure );
if D!.dimension < 0 or
n < D!.dimension then
return 0;
elif n / 2 < D!.dimension then
k:= n - D!.dimension;
else
k:= D!.dimension;
fi;
q:= Size( LeftActingDomain( D!.structure ) );
size:= 1;
qn:= q^n;
qd:= q;
for i in [ 1 .. k ] do
size:= size * ( qn - 1 ) / ( qd - 1 );
qn:= qn / q;
qd:= qd * q;
od;
fi;
# Return the result.
return size;
end );
#############################################################################
##
#M Enumerator( <D> ) . . . . . . . . . . . . . . . . for a subspaces domain
##
## Use the iterator to compute the elements list.
#T This is not allowed!
##
InstallMethod( Enumerator,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local iter, # iterator for 'D'
elms; # elements list, result
iter:= Iterator( D );
elms:= [];
while not IsDoneIterator( iter ) do
Add( elms, NextIterator( iter ) );
od;
return elms;
end );
#T necessary?
#############################################################################
##
#M Iterator( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
## uses the subspaces iterator for full row spaces and the mechanism of
## associated row spaces.
##
BindGlobal( "IsDoneIterator_Subspaces",
iter -> IsDoneIterator( iter!.associatedIterator ) );
BindGlobal( "NextIterator_Subspaces", function( iter )
local next;
next:= NextIterator( iter!.associatedIterator );
next:= List( GeneratorsOfLeftModule( next ),
x -> LinearCombination( iter!.basis, x ) );
return Subspace( iter!.structure, next, "basis" );
end );
BindGlobal( "ShallowCopy_Subspaces",
iter -> rec( structure := iter!.structure,
basis := iter!.basis,
associatedIterator := ShallowCopy(
iter!.associatedIterator ) ) );
InstallMethod( Iterator,
"for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local V; # the vector space
V:= D!.structure;
return IteratorByFunctions( rec(
IsDoneIterator := IsDoneIterator_Subspaces,
NextIterator := NextIterator_Subspaces,
ShallowCopy := ShallowCopy_Subspaces,
structure := V,
basis := Basis( V ),
associatedIterator := Iterator(
Subspaces( FullRowSpace( LeftActingDomain( V ),
Dimension( V ) ),
D!.dimension ) ) ) );
end );
#############################################################################
##
#M Subspaces( <V>, <dim> )
##
InstallMethod( Subspaces,
"for a vector space, and an integer",
[ IsVectorSpace, IsInt ],
function( V, dim )
if IsFinite( V ) then
return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
IsSubspacesVectorSpace
and IsSubspacesVectorSpaceDefaultRep ),
rec(
structure := V,
dimension := dim
)
);
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M Subspaces( <V> )
##
InstallMethod( Subspaces,
"for a vector space",
[ IsVectorSpace ],
function( V )
if IsFinite( V ) then
return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
IsSubspacesVectorSpace
and IsSubspacesVectorSpaceDefaultRep ),
rec(
structure := V,
dimension := "all"
)
);
else
TryNextMethod();
fi;
end );
#############################################################################
##
#F IsSubspace( <V>, <U> ) . . . . . . . . . . . . . . . . . check <U> <= <V>
##
InstallGlobalFunction( IsSubspace, function( V, U )
return IsVectorSpace( U ) and IsSubset( V, U );
end );
#############################################################################
##
#M IsVectorSpaceHomomorphism( <map> )
##
InstallMethod( IsVectorSpaceHomomorphism,
[ IsGeneralMapping ],
function( map )
local S, R, F;
S:= Source( map );
if not IsVectorSpace( S ) then
return false;
fi;
R:= Range( map );
if not IsVectorSpace( R ) then
return false;
fi;
F:= LeftActingDomain( S );
return ( F = LeftActingDomain( R ) ) and IsLinearMapping( F, map );
end );
#############################################################################
##
#E