Merge branch 'master' into 815-update

Conflicts:
	lib/linguist/samples.json
This commit is contained in:
Arfon Smith
2014-05-30 15:38:55 -05:00
171 changed files with 59592 additions and 694 deletions

2
.gitignore vendored
View File

@@ -1 +1,3 @@
Gemfile.lock
.bundle/
vendor/

View File

@@ -2,10 +2,8 @@ before_install:
- sudo apt-get install libicu-dev -y
- gem update --system 2.1.11
rvm:
- 1.8.7
- 1.9.2
- 1.9.3
- 2.0.0
- ree
- 2.1.1
notifications:
disabled: true

View File

@@ -1,7 +1,2 @@
source 'https://rubygems.org'
gemspec
if RUBY_VERSION < "1.9.3"
# escape_utils 1.0.0 requires 1.9.3 and above
gem "escape_utils", "0.3.2"
end

View File

@@ -106,8 +106,50 @@ To update the `samples.json` after adding new files to [`samples/`](https://gith
bundle exec rake samples
### A note on language extensions
Linguist has a number of methods available to it for identifying the language of a particular file. The initial lookup is based upon the extension of the file, possible file extensions are defined in an array called `extensions`. Take a look at this example for example for `Perl`:
```
Perl:
type: programming
ace_mode: perl
color: "#0298c3"
extensions:
- .pl
- .PL
- .perl
- .ph
- .plx
- .pm
- .pod
- .psgi
interpreters:
- perl
```
Any of the extensions defined are valid but the first in this array should be the most popular.
### Testing
Sometimes getting the tests running can be too much work, especially if you don't have much Ruby experience. It's okay: be lazy and let our build bot [Travis](http://travis-ci.org/#!/github/linguist) run the tests for you. Just open a pull request and the bot will start cranking away.
Here's our current build status, which is hopefully green: [![Build Status](https://secure.travis-ci.org/github/linguist.png?branch=master)](http://travis-ci.org/github/linguist)
### Releasing
If you are the current maintainer of this gem:
0. Create a branch for the release: `git checkout -b cut-release-vxx.xx.xx`
0. Make sure your local dependencies are up to date: `bundle install`
0. Ensure that samples are updated: `bundle exec rake samples`
0. Ensure that tests are green: `bundle exec rake test`
0. Bump gem version in github-linguist.gemspec. For example, [like this](https://github.com/github/linguist/commit/97908204a385940e47251af9ecb689e8f6515c48).
0. Make a PR to github/linguist. For example, [#1075](https://github.com/github/linguist/pull/1075).
0. Build a local gem: `gem build github-linguist.gemspec`
0. Testing:
0. Bump the Gemfile and Gemfile.lock versions for an app which relies on this gem
0. Install the new gem locally
0. Test behavior locally, branch deploy, whatever needs to happen
0. Merge github/linguist PR
0. Tag and push: `git tag vx.xx.xx; git push --tags`
0. Push to rubygems.org -- `gem push github-linguist-2.10.12.gem`

View File

@@ -1,6 +1,8 @@
require File.expand_path('../lib/linguist/version', __FILE__)
Gem::Specification.new do |s|
s.name = 'github-linguist'
s.version = '2.10.12'
s.version = Linguist::VERSION
s.summary = "GitHub Language detection"
s.description = 'We use this library at GitHub to detect blob languages, highlight code, ignore binary files, suppress generated files in diffs, and generate language breakdown graphs.'
@@ -11,8 +13,8 @@ Gem::Specification.new do |s|
s.files = Dir['lib/**/*']
s.executables << 'linguist'
s.add_dependency 'charlock_holmes', '~> 0.6.6'
s.add_dependency 'escape_utils', '>= 0.3.1'
s.add_dependency 'charlock_holmes', '~> 0.7.1'
s.add_dependency 'escape_utils', '~> 1.0.1'
s.add_dependency 'mime-types', '~> 1.19'
s.add_dependency 'pygments.rb', '~> 0.5.4'

View File

@@ -4,3 +4,4 @@ require 'linguist/heuristics'
require 'linguist/language'
require 'linguist/repository'
require 'linguist/samples'
require 'linguist/version'

View File

@@ -241,7 +241,25 @@ module Linguist
def lines
@lines ||=
if viewable? && data
data.split(/\r\n|\r|\n/, -1)
# `data` is usually encoded as ASCII-8BIT even when the content has
# been detected as a different encoding. However, we are not allowed
# to change the encoding of `data` because we've made the implicit
# guarantee that each entry in `lines` is encoded the same way as
# `data`.
#
# Instead, we re-encode each possible newline sequence as the
# detected encoding, then force them back to the encoding of `data`
# (usually a binary encoding like ASCII-8BIT). This means that the
# byte sequence will match how newlines are likely encoded in the
# file, but we don't have to change the encoding of `data` as far as
# Ruby is concerned. This allows us to correctly parse out each line
# without changing the encoding of `data`, and
# also--importantly--without having to duplicate many (potentially
# large) strings.
encoded_newlines = ["\r\n", "\r", "\n"].
map { |nl| nl.encode(encoding).force_encoding(data.encoding) }
data.split(Regexp.union(encoded_newlines), -1)
else
[]
end

View File

@@ -28,6 +28,9 @@ module Linguist
if languages.all? { |l| ["Common Lisp", "OpenCL"].include?(l) }
disambiguate_cl(data, languages)
end
if languages.all? { |l| ["Rebol", "R"].include?(l) }
disambiguate_r(data, languages)
end
end
end
@@ -73,6 +76,13 @@ module Linguist
matches
end
def self.disambiguate_r(data, languages)
matches = []
matches << Language["Rebol"] if /\bRebol\b/i.match(data)
matches << Language["R"] if data.include?("<-")
matches
end
def self.active?
!!ACTIVE
end

View File

@@ -24,7 +24,6 @@ module Linguist
@extension_index = Hash.new { |h,k| h[k] = [] }
@interpreter_index = Hash.new { |h,k| h[k] = [] }
@filename_index = Hash.new { |h,k| h[k] = [] }
@primary_extension_index = {}
# Valid Languages types
TYPES = [:data, :markup, :programming, :prose]
@@ -80,12 +79,6 @@ module Linguist
@extension_index[extension] << language
end
if @primary_extension_index.key?(language.primary_extension)
raise ArgumentError, "Duplicate primary extension: #{language.primary_extension}"
end
@primary_extension_index[language.primary_extension] = language
language.interpreters.each do |interpreter|
@interpreter_index[interpreter] << language
end
@@ -191,8 +184,7 @@ module Linguist
# Returns all matching Languages or [] if none were found.
def self.find_by_filename(filename)
basename, extname = File.basename(filename), File.extname(filename)
langs = [@primary_extension_index[extname]] +
@filename_index[basename] +
langs = @filename_index[basename] +
@extension_index[extname]
langs.compact.uniq
end
@@ -299,15 +291,6 @@ module Linguist
@interpreters = attributes[:interpreters] || []
@filenames = attributes[:filenames] || []
unless @primary_extension = attributes[:primary_extension]
raise ArgumentError, "#{@name} is missing primary extension"
end
# Prepend primary extension unless its already included
if primary_extension && !extensions.include?(primary_extension)
@extensions = [primary_extension] + extensions
end
# Set popular, and searchable flags
@popular = attributes.key?(:popular) ? attributes[:popular] : false
@searchable = attributes.key?(:searchable) ? attributes[:searchable] : true
@@ -395,20 +378,6 @@ module Linguist
# Returns the extensions Array
attr_reader :extensions
# Deprecated: Get primary extension
#
# Defaults to the first extension but can be overridden
# in the languages.yml.
#
# The primary extension can not be nil. Tests should verify this.
#
# This attribute is only used by app/helpers/gists_helper.rb for
# creating the language dropdown. It really should be using `name`
# instead. Would like to drop primary extension.
#
# Returns the extension String.
attr_reader :primary_extension
# Public: Get interpreters
#
# Examples
@@ -426,6 +395,27 @@ module Linguist
#
# Returns the extensions Array
attr_reader :filenames
# Public: Return all possible extensions for language
def all_extensions
(extensions + [primary_extension]).uniq
end
# Deprecated: Get primary extension
#
# Defaults to the first extension but can be overridden
# in the languages.yml.
#
# The primary extension can not be nil. Tests should verify this.
#
# This method is only used by app/helpers/gists_helper.rb for creating
# the language dropdown. It really should be using `name` instead.
# Would like to drop primary extension.
#
# Returns the extension String.
def primary_extension
extensions.first
end
# Public: Get URL escaped name.
#
@@ -568,9 +558,8 @@ module Linguist
:group_name => options['group'],
:searchable => options.key?('searchable') ? options['searchable'] : true,
:search_term => options['search_term'],
:extensions => options['extensions'].sort,
:extensions => [options['extensions'].first] + options['extensions'][1..-1].sort,
:interpreters => options['interpreters'].sort,
:primary_extension => options['primary_extension'],
:filenames => options['filenames'],
:popular => popular.include?(name)
)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -98,9 +98,16 @@
# AngularJS
- (^|/)angular([^.]*)(\.min)?\.js$
# D3.js
- (^|\/)d3(\.v\d+)?([^.]*)(\.min)?\.js$
# React
- (^|/)react(-[^.]*)?(\.min)?\.js$
# Modernizr
- (^|/)modernizr\-\d\.\d+(\.\d+)?(\.min)?\.js$
- (^|/)modernizr\.custom\.\d+\.js$
## Python ##
# django
@@ -131,6 +138,7 @@
# Visual Studio IntelliSense
- -vsdoc\.js$
- \.intellisense\.js$
# jQuery validation plugin (MS bundles this with asp.net mvc)
- (^|/)jquery([^.]*)\.validate(\.unobtrusive)?(\.min)?\.js$
@@ -140,7 +148,7 @@
- (^|/)[Mm]icrosoft([Mm]vc)?([Aa]jax|[Vv]alidation)(\.debug)?\.js$
# NuGet
- ^[Pp]ackages/
- ^[Pp]ackages\/.+\.\d+\/
# ExtJS
- (^|/)extjs/.*?\.js$
@@ -185,3 +193,6 @@
# .DS_Store's
- .[Dd][Ss]_[Ss]tore$
# Mercury --use-subdirs
- Mercury/

3
lib/linguist/version.rb Normal file
View File

@@ -0,0 +1,3 @@
module Linguist
VERSION = "2.11.1"
end

View File

@@ -0,0 +1,59 @@
module examples/systems/file_system
/*
* Model of a generic file system.
*/
abstract sig Object {}
sig Name {}
sig File extends Object {} { some d: Dir | this in d.entries.contents }
sig Dir extends Object {
entries: set DirEntry,
parent: lone Dir
} {
parent = this.~@contents.~@entries
all e1, e2 : entries | e1.name = e2.name => e1 = e2
this !in this.^@parent
this != Root => Root in this.^@parent
}
one sig Root extends Dir {} { no parent }
lone sig Cur extends Dir {}
sig DirEntry {
name: Name,
contents: Object
} {
one this.~entries
}
/**
* all directories besides root have one parent
*/
pred OneParent_buggyVersion {
all d: Dir - Root | one d.parent
}
/**
* all directories besides root have one parent
*/
pred OneParent_correctVersion {
all d: Dir - Root | (one d.parent && one contents.d)
}
/**
* Only files may be linked (that is, have more than one entry)
* That is, all directories are the contents of at most one directory entry
*/
pred NoDirAliases {
all o: Dir | lone o.~contents
}
check { OneParent_buggyVersion => NoDirAliases } for 5 expect 1
check { OneParent_correctVersion => NoDirAliases } for 5 expect 0

View File

@@ -0,0 +1,83 @@
module examples/systems/marksweepgc
/*
* Model of mark and sweep garbage collection.
*/
// a node in the heap
sig Node {}
sig HeapState {
left, right : Node -> lone Node,
marked : set Node,
freeList : lone Node
}
pred clearMarks[hs, hs' : HeapState] {
// clear marked set
no hs'.marked
// left and right fields are unchanged
hs'.left = hs.left
hs'.right = hs.right
}
/**
* simulate the recursion of the mark() function using transitive closure
*/
fun reachable[hs: HeapState, n: Node] : set Node {
n + n.^(hs.left + hs.right)
}
pred mark[hs: HeapState, from : Node, hs': HeapState] {
hs'.marked = hs.reachable[from]
hs'.left = hs.left
hs'.right = hs.right
}
/**
* complete hack to simulate behavior of code to set freeList
*/
pred setFreeList[hs, hs': HeapState] {
// especially hackish
hs'.freeList.*(hs'.left) in (Node - hs.marked)
all n: Node |
(n !in hs.marked) => {
no hs'.right[n]
hs'.left[n] in (hs'.freeList.*(hs'.left))
n in hs'.freeList.*(hs'.left)
} else {
hs'.left[n] = hs.left[n]
hs'.right[n] = hs.right[n]
}
hs'.marked = hs.marked
}
pred GC[hs: HeapState, root : Node, hs': HeapState] {
some hs1, hs2: HeapState |
hs.clearMarks[hs1] && hs1.mark[root, hs2] && hs2.setFreeList[hs']
}
assert Soundness1 {
all h, h' : HeapState, root : Node |
h.GC[root, h'] =>
(all live : h.reachable[root] | {
h'.left[live] = h.left[live]
h'.right[live] = h.right[live]
})
}
assert Soundness2 {
all h, h' : HeapState, root : Node |
h.GC[root, h'] =>
no h'.reachable[root] & h'.reachable[h'.freeList]
}
assert Completeness {
all h, h' : HeapState, root : Node |
h.GC[root, h'] =>
(Node - h'.reachable[root]) in h'.reachable[h'.freeList]
}
check Soundness1 for 3 expect 0
check Soundness2 for 3 expect 0
check Completeness for 3 expect 0

217
samples/Alloy/views.als Normal file
View File

@@ -0,0 +1,217 @@
module examples/systems/views
/*
* Model of views in object-oriented programming.
*
* Two object references, called the view and the backing,
* are related by a view mechanism when changes to the
* backing are automatically propagated to the view. Note
* that the state of a view need not be a projection of the
* state of the backing; the keySet method of Map, for
* example, produces two view relationships, and for the
* one in which the map is modified by changes to the key
* set, the value of the new map cannot be determined from
* the key set. Note that in the iterator view mechanism,
* the iterator is by this definition the backing object,
* since changes are propagated from iterator to collection
* and not vice versa. Oddly, a reference may be a view of
* more than one backing: there can be two iterators on the
* same collection, eg. A reference cannot be a view under
* more than one view type.
*
* A reference is made dirty when it is a backing for a view
* with which it is no longer related by the view invariant.
* This usually happens when a view is modified, either
* directly or via another backing. For example, changing a
* collection directly when it has an iterator invalidates
* it, as does changing the collection through one iterator
* when there are others.
*
* More work is needed if we want to model more closely the
* failure of an iterator when its collection is invalidated.
*
* As a terminological convention, when there are two
* complementary view relationships, we will give them types
* t and t'. For example, KeySetView propagates from map to
* set, and KeySetView' propagates from set to map.
*
* author: Daniel Jackson
*/
open util/ordering[State] as so
open util/relation as rel
sig Ref {}
sig Object {}
-- t->b->v in views when v is view of type t of backing b
-- dirty contains refs that have been invalidated
sig State {
refs: set Ref,
obj: refs -> one Object,
views: ViewType -> refs -> refs,
dirty: set refs
-- , anyviews: Ref -> Ref -- for visualization
}
-- {anyviews = ViewType.views}
sig Map extends Object {
keys: set Ref,
map: keys -> one Ref
}{all s: State | keys + Ref.map in s.refs}
sig MapRef extends Ref {}
fact {State.obj[MapRef] in Map}
sig Iterator extends Object {
left, done: set Ref,
lastRef: lone done
}{all s: State | done + left + lastRef in s.refs}
sig IteratorRef extends Ref {}
fact {State.obj[IteratorRef] in Iterator}
sig Set extends Object {
elts: set Ref
}{all s: State | elts in s.refs}
sig SetRef extends Ref {}
fact {State.obj[SetRef] in Set}
abstract sig ViewType {}
one sig KeySetView, KeySetView', IteratorView extends ViewType {}
fact ViewTypes {
State.views[KeySetView] in MapRef -> SetRef
State.views[KeySetView'] in SetRef -> MapRef
State.views[IteratorView] in IteratorRef -> SetRef
all s: State | s.views[KeySetView] = ~(s.views[KeySetView'])
}
/**
* mods is refs modified directly or by view mechanism
* doesn't handle possibility of modifying an object and its view at once?
* should we limit frame conds to non-dirty refs?
*/
pred modifies [pre, post: State, rs: set Ref] {
let vr = pre.views[ViewType], mods = rs.*vr {
all r: pre.refs - mods | pre.obj[r] = post.obj[r]
all b: mods, v: pre.refs, t: ViewType |
b->v in pre.views[t] => viewFrame [t, pre.obj[v], post.obj[v], post.obj[b]]
post.dirty = pre.dirty +
{b: pre.refs | some v: Ref, t: ViewType |
b->v in pre.views[t] && !viewFrame [t, pre.obj[v], post.obj[v], post.obj[b]]
}
}
}
pred allocates [pre, post: State, rs: set Ref] {
no rs & pre.refs
post.refs = pre.refs + rs
}
/**
* models frame condition that limits change to view object from v to v' when backing object changes to b'
*/
pred viewFrame [t: ViewType, v, v', b': Object] {
t in KeySetView => v'.elts = dom [b'.map]
t in KeySetView' => b'.elts = dom [v'.map]
t in KeySetView' => (b'.elts) <: (v.map) = (b'.elts) <: (v'.map)
t in IteratorView => v'.elts = b'.left + b'.done
}
pred MapRef.keySet [pre, post: State, setRefs: SetRef] {
post.obj[setRefs].elts = dom [pre.obj[this].map]
modifies [pre, post, none]
allocates [pre, post, setRefs]
post.views = pre.views + KeySetView->this->setRefs + KeySetView'->setRefs->this
}
pred MapRef.put [pre, post: State, k, v: Ref] {
post.obj[this].map = pre.obj[this].map ++ k->v
modifies [pre, post, this]
allocates [pre, post, none]
post.views = pre.views
}
pred SetRef.iterator [pre, post: State, iterRef: IteratorRef] {
let i = post.obj[iterRef] {
i.left = pre.obj[this].elts
no i.done + i.lastRef
}
modifies [pre,post,none]
allocates [pre, post, iterRef]
post.views = pre.views + IteratorView->iterRef->this
}
pred IteratorRef.remove [pre, post: State] {
let i = pre.obj[this], i' = post.obj[this] {
i'.left = i.left
i'.done = i.done - i.lastRef
no i'.lastRef
}
modifies [pre,post,this]
allocates [pre, post, none]
pre.views = post.views
}
pred IteratorRef.next [pre, post: State, ref: Ref] {
let i = pre.obj[this], i' = post.obj[this] {
ref in i.left
i'.left = i.left - ref
i'.done = i.done + ref
i'.lastRef = ref
}
modifies [pre, post, this]
allocates [pre, post, none]
pre.views = post.views
}
pred IteratorRef.hasNext [s: State] {
some s.obj[this].left
}
assert zippishOK {
all
ks, vs: SetRef,
m: MapRef,
ki, vi: IteratorRef,
k, v: Ref |
let s0=so/first,
s1=so/next[s0],
s2=so/next[s1],
s3=so/next[s2],
s4=so/next[s3],
s5=so/next[s4],
s6=so/next[s5],
s7=so/next[s6] |
({
precondition [s0, ks, vs, m]
no s0.dirty
ks.iterator [s0, s1, ki]
vs.iterator [s1, s2, vi]
ki.hasNext [s2]
vi.hasNext [s2]
ki.this/next [s2, s3, k]
vi.this/next [s3, s4, v]
m.put [s4, s5, k, v]
ki.remove [s5, s6]
vi.remove [s6, s7]
} => no State.dirty)
}
pred precondition [pre: State, ks, vs, m: Ref] {
// all these conditions and other errors discovered in scope of 6 but 8,3
// in initial state, must have view invariants hold
(all t: ViewType, b, v: pre.refs |
b->v in pre.views[t] => viewFrame [t, pre.obj[v], pre.obj[v], pre.obj[b]])
// sets are not aliases
-- ks != vs
// sets are not views of map
-- no (ks+vs)->m & ViewType.pre.views
// no iterator currently on either set
-- no Ref->(ks+vs) & ViewType.pre.views
}
check zippishOK for 6 but 8 State, 3 ViewType expect 1
/**
* experiment with controlling heap size
*/
fact {all s: State | #s.obj < 5}

530
samples/C++/Math.inl Normal file
View File

@@ -0,0 +1,530 @@
/*
===========================================================================
The Open Game Libraries.
Copyright (C) 2007-2010 Lusito Software
Author: Santo Pfingsten (TTK-Bandit)
Purpose: Math namespace
-----------------------------------------
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
===========================================================================
*/
#ifndef __OG_MATH_INL__
#define __OG_MATH_INL__
namespace og {
/*
==============================================================================
Math
==============================================================================
*/
/*
================
Math::Abs
================
*/
OG_INLINE int Math::Abs( int i ) {
#if 1
if ( i & 0x80000000 )
return 0x80000000 - (i & MASK_SIGNED);
return i;
#else
int y = x >> 31;
return ( ( x ^ y ) - y );
#endif
}
/*
================
Math::Fabs
================
*/
OG_INLINE float Math::Fabs( float f ) {
#if 1
uInt *pf = reinterpret_cast<uInt*>(&f);
*(pf) &= MASK_SIGNED;
return f;
#else
return fabsf( f );
#endif
}
/*
================
Math::Round
================
*/
OG_INLINE float Math::Round( float f ) {
return floorf( f + 0.5f );
}
/*
================
Math::Floor
================
*/
OG_INLINE float Math::Floor( float f ) {
return floorf( f );
}
/*
================
Math::Ceil
================
*/
OG_INLINE float Math::Ceil( float f ) {
return ceilf( f );
}
/*
================
Math::Ftoi
ok since this is SSE, why should the other ftoi be the faster one ?
and: we might need to add a check for SSE extensions..
because sse isn't *really* faster (I actually read that GCC does not handle
SSE extensions perfectly. I'll find the link and send it to you when you're online)
================
*/
OG_INLINE int Math::Ftoi( float f ) {
//! @todo needs testing
// note: sse function cvttss2si
#if OG_ASM_MSVC
int i;
#if defined(OG_FTOI_USE_SSE)
if( SysInfo::cpu.general.SSE ) {
__asm cvttss2si eax, f
__asm mov i, eax
return i;
} else
#endif
{
__asm fld f
__asm fistp i
//__asm mov eax, i // do we need this ? O_o
}
return i;
#elif OG_ASM_GNU
int i;
#if defined(OG_FTOI_USE_SSE)
if( SysInfo::cpu.general.SSE ) {
__asm__ __volatile__( "cvttss2si %1 \n\t"
: "=m" (i)
: "m" (f)
);
} else
#endif
{
__asm__ __volatile__( "flds %1 \n\t"
"fistpl %0 \n\t"
: "=m" (i)
: "m" (f)
);
}
return i;
#else
// we use c++ cast instead of c cast (not sure why id did that)
return static_cast<int>(f);
#endif
}
/*
================
Math::FtoiFast
================
*/
OG_INLINE int Math::FtoiFast( float f ) {
#if OG_ASM_MSVC
int i;
__asm fld f
__asm fistp i
//__asm mov eax, i // do we need this ? O_o
return i;
#elif OG_ASM_GNU
int i;
__asm__ __volatile__( "flds %1 \n\t"
"fistpl %0 \n\t"
: "=m" (i)
: "m" (f)
);
return i;
#else
// we use c++ cast instead of c cast (not sure why id did that)
return static_cast<int>(f);
#endif
}
/*
================
Math::Ftol
================
*/
OG_INLINE long Math::Ftol( float f ) {
#if OG_ASM_MSVC
long i;
__asm fld f
__asm fistp i
//__asm mov eax, i // do we need this ? O_o
return i;
#elif OG_ASM_GNU
long i;
__asm__ __volatile__( "flds %1 \n\t"
"fistpl %0 \n\t"
: "=m" (i)
: "m" (f)
);
return i;
#else
// we use c++ cast instead of c cast (not sure why id did that)
return static_cast<long>(f);
#endif
}
/*
================
Math::Sign
================
*/
OG_INLINE float Math::Sign( float f ) {
if ( f > 0.0f )
return 1.0f;
if ( f < 0.0f )
return -1.0f;
return 0.0f;
}
/*
================
Math::Fmod
================
*/
OG_INLINE float Math::Fmod( float numerator, float denominator ) {
return fmodf( numerator, denominator );
}
/*
================
Math::Modf
================
*/
OG_INLINE float Math::Modf( float f, float& i ) {
return modff( f, &i );
}
OG_INLINE float Math::Modf( float f ) {
float i;
return modff( f, &i );
}
/*
================
Math::Sqrt
================
*/
OG_INLINE float Math::Sqrt( float f ) {
return sqrtf( f );
}
/*
================
Math::InvSqrt
Cannot be 0.0f
================
*/
OG_INLINE float Math::InvSqrt( float f ) {
OG_ASSERT( f != 0.0f );
return 1.0f / sqrtf( f );
}
/*
================
Math::RSqrt
Can be 0.0f
================
*/
OG_INLINE float Math::RSqrt( float f ) {
float g = 0.5f * f;
int i = *reinterpret_cast<int *>(&f);
// do a guess
i = 0x5f375a86 - ( i>>1 );
f = *reinterpret_cast<float *>(&i);
// Newtons calculation
f = f * ( 1.5f - g * f * f );
return f;
}
/*
================
Math::Log/Log2/Log10
Log of 0 is bad.
I've also heard you're not really
supposed to do log of negatives, yet
they work fine.
================
*/
OG_INLINE float Math::Log( float f ) {
OG_ASSERT( f != 0.0f );
return logf( f );
}
OG_INLINE float Math::Log2( float f ) {
OG_ASSERT( f != 0.0f );
return INV_LN_2 * logf( f );
}
OG_INLINE float Math::Log10( float f ) {
OG_ASSERT( f != 0.0f );
return INV_LN_10 * logf( f );
}
/*
================
Math::Pow
================
*/
OG_INLINE float Math::Pow( float base, float exp ) {
return powf( base, exp );
}
/*
================
Math::Exp
================
*/
OG_INLINE float Math::Exp( float f ) {
return expf( f );
}
/*
================
Math::IsPowerOfTwo
================
*/
OG_INLINE bool Math::IsPowerOfTwo( int x ) {
// This is the faster of the two known methods
// with the x > 0 check moved to the beginning
return x > 0 && ( x & ( x - 1 ) ) == 0;
}
/*
================
Math::HigherPowerOfTwo
================
*/
OG_INLINE int Math::HigherPowerOfTwo( int x ) {
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x + 1;
}
/*
================
Math::LowerPowerOfTwo
================
*/
OG_INLINE int Math::LowerPowerOfTwo( int x ) {
return HigherPowerOfTwo( x ) >> 1;
}
/*
================
Math::FloorPowerOfTwo
================
*/
OG_INLINE int Math::FloorPowerOfTwo( int x ) {
return IsPowerOfTwo( x ) ? x : LowerPowerOfTwo( x );
}
/*
================
Math::CeilPowerOfTwo
================
*/
OG_INLINE int Math::CeilPowerOfTwo( int x ) {
return IsPowerOfTwo( x ) ? x : HigherPowerOfTwo( x );
}
/*
================
Math::ClosestPowerOfTwo
================
*/
OG_INLINE int Math::ClosestPowerOfTwo( int x ) {
if ( IsPowerOfTwo( x ) )
return x;
int high = HigherPowerOfTwo( x );
int low = high >> 1;
return ((high-x) < (x-low)) ? high : low;
}
/*
================
Math::Digits
================
*/
OG_INLINE int Math::Digits( int x ) {
int digits = 1;
int step = 10;
while (step <= x) {
digits++;
step *= 10;
}
return digits;
}
/*
================
Math::Sin/ASin
================
*/
OG_INLINE float Math::Sin( float f ) {
return sinf( f );
}
OG_INLINE float Math::ASin( float f ) {
if ( f <= -1.0f )
return -HALF_PI;
if ( f >= 1.0f )
return HALF_PI;
return asinf( f );
}
/*
================
Math::Cos/ACos
================
*/
OG_INLINE float Math::Cos( float f ) {
return cosf( f );
}
OG_INLINE float Math::ACos( float f ) {
if ( f <= -1.0f )
return PI;
if ( f >= 1.0f )
return 0.0f;
return acosf( f );
}
/*
================
Math::Tan/ATan
================
*/
OG_INLINE float Math::Tan( float f ) {
return tanf( f );
}
OG_INLINE float Math::ATan( float f ) {
return atanf( f );
}
OG_INLINE float Math::ATan( float f1, float f2 ) {
return atan2f( f1, f2 );
}
/*
================
Math::SinCos
================
*/
OG_INLINE void Math::SinCos( float f, float &s, float &c ) {
#if OG_ASM_MSVC
// sometimes assembler is just waaayy faster
_asm {
fld f
fsincos
mov ecx, c
mov edx, s
fstp dword ptr [ecx]
fstp dword ptr [edx]
}
#elif OG_ASM_GNU
asm ("fsincos" : "=t" (c), "=u" (s) : "0" (f));
#else
s = Sin(f);
c = Sqrt( 1.0f - s * s ); // faster than calling Cos(f)
#endif
}
/*
================
Math::Deg2Rad
================
*/
OG_INLINE float Math::Deg2Rad( float f ) {
return f * DEG_TO_RAD;
}
/*
================
Math::Rad2Deg
================
*/
OG_INLINE float Math::Rad2Deg( float f ) {
return f * RAD_TO_DEG;
}
/*
================
Math::Square
================
*/
OG_INLINE float Math::Square( float v ) {
return v * v;
}
/*
================
Math::Cube
================
*/
OG_INLINE float Math::Cube( float v ) {
return v * v * v;
}
/*
================
Math::Sec2Ms
================
*/
OG_INLINE int Math::Sec2Ms( int sec ) {
return sec * 1000;
}
/*
================
Math::Ms2Sec
================
*/
OG_INLINE int Math::Ms2Sec( int ms ) {
return FtoiFast( ms * 0.001f );
}
}
#endif

View File

@@ -0,0 +1,664 @@
//
// detail/impl/epoll_reactor.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2013 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP
#define BOOST_ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#if defined(BOOST_ASIO_HAS_EPOLL)
#include <cstddef>
#include <sys/epoll.h>
#include <boost/asio/detail/epoll_reactor.hpp>
#include <boost/asio/detail/throw_error.hpp>
#include <boost/asio/error.hpp>
#if defined(BOOST_ASIO_HAS_TIMERFD)
# include <sys/timerfd.h>
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
namespace detail {
epoll_reactor::epoll_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<epoll_reactor>(io_service),
io_service_(use_service<io_service_impl>(io_service)),
mutex_(),
interrupter_(),
epoll_fd_(do_epoll_create()),
timer_fd_(do_timerfd_create()),
shutdown_(false)
{
// Add the interrupter's descriptor to epoll.
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
interrupter_.interrupt();
// Add the timer descriptor to epoll.
if (timer_fd_ != -1)
{
ev.events = EPOLLIN | EPOLLERR;
ev.data.ptr = &timer_fd_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev);
}
}
epoll_reactor::~epoll_reactor()
{
if (epoll_fd_ != -1)
close(epoll_fd_);
if (timer_fd_ != -1)
close(timer_fd_);
}
void epoll_reactor::shutdown_service()
{
mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
op_queue<operation> ops;
while (descriptor_state* state = registered_descriptors_.first())
{
for (int i = 0; i < max_ops; ++i)
ops.push(state->op_queue_[i]);
state->shutdown_ = true;
registered_descriptors_.free(state);
}
timer_queues_.get_all_timers(ops);
io_service_.abandon_operations(ops);
}
void epoll_reactor::fork_service(boost::asio::io_service::fork_event fork_ev)
{
if (fork_ev == boost::asio::io_service::fork_child)
{
if (epoll_fd_ != -1)
::close(epoll_fd_);
epoll_fd_ = -1;
epoll_fd_ = do_epoll_create();
if (timer_fd_ != -1)
::close(timer_fd_);
timer_fd_ = -1;
timer_fd_ = do_timerfd_create();
interrupter_.recreate();
// Add the interrupter's descriptor to epoll.
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
interrupter_.interrupt();
// Add the timer descriptor to epoll.
if (timer_fd_ != -1)
{
ev.events = EPOLLIN | EPOLLERR;
ev.data.ptr = &timer_fd_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev);
}
update_timeout();
// Re-register all descriptors with epoll.
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
for (descriptor_state* state = registered_descriptors_.first();
state != 0; state = state->next_)
{
ev.events = state->registered_events_;
ev.data.ptr = state;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, state->descriptor_, &ev);
if (result != 0)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(ec, "epoll re-registration");
}
}
}
}
void epoll_reactor::init_task()
{
io_service_.init_task();
}
int epoll_reactor::register_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data)
{
descriptor_data = allocate_descriptor_state();
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
descriptor_data->reactor_ = this;
descriptor_data->descriptor_ = descriptor;
descriptor_data->shutdown_ = false;
}
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLPRI | EPOLLET;
descriptor_data->registered_events_ = ev.events;
ev.data.ptr = descriptor_data;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
return errno;
return 0;
}
int epoll_reactor::register_internal_descriptor(
int op_type, socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, reactor_op* op)
{
descriptor_data = allocate_descriptor_state();
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
descriptor_data->reactor_ = this;
descriptor_data->descriptor_ = descriptor;
descriptor_data->shutdown_ = false;
descriptor_data->op_queue_[op_type].push(op);
}
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLPRI | EPOLLET;
descriptor_data->registered_events_ = ev.events;
ev.data.ptr = descriptor_data;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
return errno;
return 0;
}
void epoll_reactor::move_descriptor(socket_type,
epoll_reactor::per_descriptor_data& target_descriptor_data,
epoll_reactor::per_descriptor_data& source_descriptor_data)
{
target_descriptor_data = source_descriptor_data;
source_descriptor_data = 0;
}
void epoll_reactor::start_op(int op_type, socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, reactor_op* op,
bool is_continuation, bool allow_speculative)
{
if (!descriptor_data)
{
op->ec_ = boost::asio::error::bad_descriptor;
post_immediate_completion(op, is_continuation);
return;
}
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (descriptor_data->shutdown_)
{
post_immediate_completion(op, is_continuation);
return;
}
if (descriptor_data->op_queue_[op_type].empty())
{
if (allow_speculative
&& (op_type != read_op
|| descriptor_data->op_queue_[except_op].empty()))
{
if (op->perform())
{
descriptor_lock.unlock();
io_service_.post_immediate_completion(op, is_continuation);
return;
}
if (op_type == write_op)
{
if ((descriptor_data->registered_events_ & EPOLLOUT) == 0)
{
epoll_event ev = { 0, { 0 } };
ev.events = descriptor_data->registered_events_ | EPOLLOUT;
ev.data.ptr = descriptor_data;
if (epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev) == 0)
{
descriptor_data->registered_events_ |= ev.events;
}
else
{
op->ec_ = boost::system::error_code(errno,
boost::asio::error::get_system_category());
io_service_.post_immediate_completion(op, is_continuation);
return;
}
}
}
}
else
{
if (op_type == write_op)
{
descriptor_data->registered_events_ |= EPOLLOUT;
}
epoll_event ev = { 0, { 0 } };
ev.events = descriptor_data->registered_events_;
ev.data.ptr = descriptor_data;
epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
}
}
descriptor_data->op_queue_[op_type].push(op);
io_service_.work_started();
}
void epoll_reactor::cancel_ops(socket_type,
epoll_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
io_service_.post_deferred_completions(ops);
}
void epoll_reactor::deregister_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, bool closing)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (!descriptor_data->shutdown_)
{
if (closing)
{
// The descriptor will be automatically removed from the epoll set when
// it is closed.
}
else
{
epoll_event ev = { 0, { 0 } };
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
}
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_data->descriptor_ = -1;
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
free_descriptor_state(descriptor_data);
descriptor_data = 0;
io_service_.post_deferred_completions(ops);
}
}
void epoll_reactor::deregister_internal_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (!descriptor_data->shutdown_)
{
epoll_event ev = { 0, { 0 } };
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
ops.push(descriptor_data->op_queue_[i]);
descriptor_data->descriptor_ = -1;
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
free_descriptor_state(descriptor_data);
descriptor_data = 0;
}
}
void epoll_reactor::run(bool block, op_queue<operation>& ops)
{
// This code relies on the fact that the task_io_service queues the reactor
// task behind all descriptor operations generated by this function. This
// means, that by the time we reach this point, any previously returned
// descriptor operations have already been dequeued. Therefore it is now safe
// for us to reuse and return them for the task_io_service to queue again.
// Calculate a timeout only if timerfd is not used.
int timeout;
if (timer_fd_ != -1)
timeout = block ? -1 : 0;
else
{
mutex::scoped_lock lock(mutex_);
timeout = block ? get_timeout() : 0;
}
// Block on the epoll descriptor.
epoll_event events[128];
int num_events = epoll_wait(epoll_fd_, events, 128, timeout);
#if defined(BOOST_ASIO_HAS_TIMERFD)
bool check_timers = (timer_fd_ == -1);
#else // defined(BOOST_ASIO_HAS_TIMERFD)
bool check_timers = true;
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
void* ptr = events[i].data.ptr;
if (ptr == &interrupter_)
{
// No need to reset the interrupter since we're leaving the descriptor
// in a ready-to-read state and relying on edge-triggered notifications
// to make it so that we only get woken up when the descriptor's epoll
// registration is updated.
#if defined(BOOST_ASIO_HAS_TIMERFD)
if (timer_fd_ == -1)
check_timers = true;
#else // defined(BOOST_ASIO_HAS_TIMERFD)
check_timers = true;
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
}
#if defined(BOOST_ASIO_HAS_TIMERFD)
else if (ptr == &timer_fd_)
{
check_timers = true;
}
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
else
{
// The descriptor operation doesn't count as work in and of itself, so we
// don't call work_started() here. This still allows the io_service to
// stop if the only remaining operations are descriptor operations.
descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
descriptor_data->set_ready_events(events[i].events);
ops.push(descriptor_data);
}
}
if (check_timers)
{
mutex::scoped_lock common_lock(mutex_);
timer_queues_.get_ready_timers(ops);
#if defined(BOOST_ASIO_HAS_TIMERFD)
if (timer_fd_ != -1)
{
itimerspec new_timeout;
itimerspec old_timeout;
int flags = get_timeout(new_timeout);
timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout);
}
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
}
}
void epoll_reactor::interrupt()
{
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, interrupter_.read_descriptor(), &ev);
}
int epoll_reactor::do_epoll_create()
{
#if defined(EPOLL_CLOEXEC)
int fd = epoll_create1(EPOLL_CLOEXEC);
#else // defined(EPOLL_CLOEXEC)
int fd = -1;
errno = EINVAL;
#endif // defined(EPOLL_CLOEXEC)
if (fd == -1 && (errno == EINVAL || errno == ENOSYS))
{
fd = epoll_create(epoll_size);
if (fd != -1)
::fcntl(fd, F_SETFD, FD_CLOEXEC);
}
if (fd == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(ec, "epoll");
}
return fd;
}
int epoll_reactor::do_timerfd_create()
{
#if defined(BOOST_ASIO_HAS_TIMERFD)
# if defined(TFD_CLOEXEC)
int fd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
# else // defined(TFD_CLOEXEC)
int fd = -1;
errno = EINVAL;
# endif // defined(TFD_CLOEXEC)
if (fd == -1 && errno == EINVAL)
{
fd = timerfd_create(CLOCK_MONOTONIC, 0);
if (fd != -1)
::fcntl(fd, F_SETFD, FD_CLOEXEC);
}
return fd;
#else // defined(BOOST_ASIO_HAS_TIMERFD)
return -1;
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
}
epoll_reactor::descriptor_state* epoll_reactor::allocate_descriptor_state()
{
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
return registered_descriptors_.alloc();
}
void epoll_reactor::free_descriptor_state(epoll_reactor::descriptor_state* s)
{
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
registered_descriptors_.free(s);
}
void epoll_reactor::do_add_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.insert(&queue);
}
void epoll_reactor::do_remove_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.erase(&queue);
}
void epoll_reactor::update_timeout()
{
#if defined(BOOST_ASIO_HAS_TIMERFD)
if (timer_fd_ != -1)
{
itimerspec new_timeout;
itimerspec old_timeout;
int flags = get_timeout(new_timeout);
timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout);
return;
}
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
interrupt();
}
int epoll_reactor::get_timeout()
{
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
return timer_queues_.wait_duration_msec(5 * 60 * 1000);
}
#if defined(BOOST_ASIO_HAS_TIMERFD)
int epoll_reactor::get_timeout(itimerspec& ts)
{
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000);
ts.it_value.tv_sec = usec / 1000000;
ts.it_value.tv_nsec = usec ? (usec % 1000000) * 1000 : 1;
return usec ? 0 : TFD_TIMER_ABSTIME;
}
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
struct epoll_reactor::perform_io_cleanup_on_block_exit
{
explicit perform_io_cleanup_on_block_exit(epoll_reactor* r)
: reactor_(r), first_op_(0)
{
}
~perform_io_cleanup_on_block_exit()
{
if (first_op_)
{
// Post the remaining completed operations for invocation.
if (!ops_.empty())
reactor_->io_service_.post_deferred_completions(ops_);
// A user-initiated operation has completed, but there's no need to
// explicitly call work_finished() here. Instead, we'll take advantage of
// the fact that the task_io_service will call work_finished() once we
// return.
}
else
{
// No user-initiated operations have completed, so we need to compensate
// for the work_finished() call that the task_io_service will make once
// this operation returns.
reactor_->io_service_.work_started();
}
}
epoll_reactor* reactor_;
op_queue<operation> ops_;
operation* first_op_;
};
epoll_reactor::descriptor_state::descriptor_state()
: operation(&epoll_reactor::descriptor_state::do_complete)
{
}
operation* epoll_reactor::descriptor_state::perform_io(uint32_t events)
{
mutex_.lock();
perform_io_cleanup_on_block_exit io_cleanup(reactor_);
mutex::scoped_lock descriptor_lock(mutex_, mutex::scoped_lock::adopt_lock);
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
static const int flag[max_ops] = { EPOLLIN, EPOLLOUT, EPOLLPRI };
for (int j = max_ops - 1; j >= 0; --j)
{
if (events & (flag[j] | EPOLLERR | EPOLLHUP))
{
while (reactor_op* op = op_queue_[j].front())
{
if (op->perform())
{
op_queue_[j].pop();
io_cleanup.ops_.push(op);
}
else
break;
}
}
}
// The first operation will be returned for completion now. The others will
// be posted for later by the io_cleanup object's destructor.
io_cleanup.first_op_ = io_cleanup.ops_.front();
io_cleanup.ops_.pop();
return io_cleanup.first_op_;
}
void epoll_reactor::descriptor_state::do_complete(
io_service_impl* owner, operation* base,
const boost::system::error_code& ec, std::size_t bytes_transferred)
{
if (owner)
{
descriptor_state* descriptor_data = static_cast<descriptor_state*>(base);
uint32_t events = static_cast<uint32_t>(bytes_transferred);
if (operation* op = descriptor_data->perform_io(events))
{
op->complete(*owner, ec, 0);
}
}
}
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // defined(BOOST_ASIO_HAS_EPOLL)
#endif // BOOST_ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP

View File

@@ -0,0 +1,82 @@
;; @file macros-advanced.cl
;;
;; @breif Advanced macro practices - defining your own macros
;;
;; Macro definition skeleton:
;; (defmacro name (parameter*)
;; "Optional documentation string"
;; body-form*)
;;
;; Note that backquote expression is most often used in the `body-form`
;;
; `primep` test a number for prime
(defun primep (n)
"test a number for prime"
(if (< n 2) (return-from primep))
(do ((i 2 (1+ i)) (p t (not (zerop (mod n i)))))
((> i (sqrt n)) p)
(when (not p) (return))))
; `next-prime` return the next prime bigger than the specified number
(defun next-prime (n)
"return the next prime bigger than the speicified number"
(do ((i (1+ n) (1+ i)))
((primep i) i)))
;
; The recommended procedures to writting a new macro are as follows:
; 1. Write a sample call to the macro and the code it should expand into
(do-primes (p 0 19)
(format t "~d " p))
; Expected expanded codes
(do ((p (next-prime (- 0 1)) (next-prime p)))
((> p 19))
(format t "~d " p))
; 2. Write code that generate the hardwritten expansion from the arguments in
; the sample call
(defmacro do-primes (var-and-range &rest body)
(let ((var (first var-and-range))
(start (second var-and-range))
(end (third var-and-range)))
`(do ((,var (next-prime (- ,start 1)) (next-prime ,var)))
((> ,var ,end))
,@body)))
; 2-1. More concise implementations with the 'parameter list destructuring' and
; '&body' synonym, it also emits more friendly messages on incorrent input.
(defmacro do-primes ((var start end) &body body)
`(do ((,var (next-prime (- ,start 1)) (next-prime ,var)))
((> ,var ,end))
,@body))
; 2-2. Test the result of macro expansion with the `macroexpand-1` function
(macroexpand-1 '(do-primes (p 0 19) (format t "~d " p)))
; 3. Make sure the macro abstraction does not "leak"
(defmacro do-primes ((var start end) &body body)
(let ((end-value-name (gensym)))
`(do ((,var (next-prime (- ,start 1)) (next-prime ,var))
(,end-value-name ,end))
((> ,var ,end-value-name))
,@body)))
; 3-1. Rules to observe to avoid common and possible leaks
; a. include any subforms in the expansion in positions that will be evaluated
; in the same order as the subforms appear in the macro call
; b. make sure subforms are evaluated only once by creating a variable in the
; expansion to hold the value of evaluating the argument form, and then
; using that variable anywhere else the value is needed in the expansion
; c. use `gensym` at macro expansion time to create variable names used in the
; expansion
;
; Appendix I. Macro-writting macros, 'with-gensyms', to guranttee that rule c
; gets observed.
; Example usage of `with-gensyms`
(defmacro do-primes-a ((var start end) &body body)
"do-primes implementation with macro-writting macro 'with-gensyms'"
(with-gensyms (end-value-name)
`(do ((,var (next-prime (- ,start 1)) (next-prime ,var))
(,end-value-name ,end))
((> ,var ,end-value-name))
,@body)))
; Define the macro, note how comma is used to interpolate the value of the loop
; expression
(defmacro with-gensyms ((&rest names) &body body)
`(let ,(loop for n in names collect `(,n (gensym)))
,@body)
)

View File

@@ -0,0 +1,475 @@
#|
ESCUELA POLITECNICA SUPERIOR - UNIVERSIDAD AUTONOMA DE MADRID
INTELIGENCIA ARTIFICIAL
Motor de inferencia
Basado en parte en "Paradigms of AI Programming: Case Studies
in Common Lisp", de Peter Norvig, 1992
|#
;;;;;;;;;;;;;;;;;;;;;
;;;; Global variables
;;;;;;;;;;;;;;;;;;;;;
(defvar *hypothesis-list*)
(defvar *rule-list*)
(defvar *fact-list*)
;;;;;;;;;;;;;;;;;;;;;
;;;; Constants
;;;;;;;;;;;;;;;;;;;;;
(defconstant +fail+ nil "Indicates unification failure")
(defconstant +no-bindings+ '((nil))
"Indicates unification success, with no variables.")
(defconstant *mundo-abierto* nil)
;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Functions for the user
;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Resets *fact-list* to NIL
(defun erase-facts () (setq *fact-list* nil))
(defun set-hypothesis-list (h) (setq *hypothesis-list* h))
;; Returns a list of solutions, each one satisfying all the hypothesis contained
;; in *hypothesis-list*
(defun motor-inferencia ()
(consulta *hypothesis-list*))
;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Auxiliary functions
;;;;;;;;;;;;;;;;;;;;;;;;
#|____________________________________________________________________________
FUNCTION: CONSULTA
COMMENTS:
CONSULTA receives a list of hypothesis (variable <hypotheses>), and returns
a list of binding lists (each binding list being a solution).
EXAMPLES:
hypotheses is:
((brothers ?x ?y) (neighbours juan ?x)).
That is, we are searching the brothers of the possible neighbors of Juan.
The function can return in this case:
(((?x . sergio) (?y . javier)) ((?x . julian) (?y . mario)) ((?x . julian) (?y . pedro))).
That is, the neighbors of Juan (Sergio and Julian) have 3 brothers in total(Javier, Mario, Pedro)
____________________________________________________________________________|#
(defun consulta (hypotheses)
(if (null hypotheses) (list +no-bindings+)
(mapcan #'(lambda (b)
(mapcar #'(lambda (x) (une-bindings-con-bindings b x))
(consulta (subst-bindings b (rest hypotheses)))))
(find-hypothesis-value (first hypotheses)))))
#|____________________________________________________________________________
FUNCTION: FIND-HYPOTHESIS-VALUE
COMMENTS:
This function manages the query a single query (only one hypothesis) given a binding list.
It tries (in the following order) to:
- Answer the query from *fact-list*
- Answer the query from the rules in *rule-list*
- Ask the user
The function returns a list of solutions (list of binding lists).
EXAMPLES:
If hypothesis is (brothers ?x ?y)
and the function returns:
(((?x . sergio) (?y . javier)) ((?x . julian) (?y . maria)) ((?x . alberto) (?y . pedro))).
Means that Sergio and Javier and brothers, Julian and Mario are brothers, and Alberto and Pedro are brothers.
____________________________________________________________________________|#
(defun find-hypothesis-value (hypothesis)
(let (rules)
(cond
((equality? hypothesis)
(value-from-equality hypothesis))
((value-from-facts hypothesis))
((setq good-rules (find-rules hypothesis))
(value-from-rules hypothesis good-rules))
(t (ask-user hypothesis)))))
; une-bindings-con-bindings takes two binding lists and returns a binding list
; Assumes that b1 and b2 are not +fail+
(defun une-bindings-con-bindings (b1 b2)
(cond
((equal b1 +no-bindings+) b2)
((equal b2 +no-bindings+) b1)
(T (append b1 b2))))
#|____________________________________________________________________________
FUNCTION: VALUE-FROM-FACTS
COMMENTS:
Returns all the solutions of <hypothesis> obtained directly from *fact-list*
EXAMPLES:
> (setf *fact-list* '((man luis) (man pedro)(woman mart)(man daniel)(woman laura)))
> (value-from-facts '(man ?x))
returns:
(((?X . LUIS)) ((?X . PEDRO)) ((?X . DANIEL)))
____________________________________________________________________________|#
(defun value-from-facts (hypothesis)
(mapcan #'(lambda(x) (let ((aux (unify hypothesis x)))
(when aux (list aux)))) *fact-list*))
#|____________________________________________________________________________
FUNCTION: FIND-RULES
COMMENTS:
Returns the rules in *rule-list* whose THENs unify with the term given in <hypothesis>
The variables in the rules that satisfy this requirement are renamed.
EXAMPLES:
> (setq *rule-list*
'((R1 (pertenece ?E (?E . ?_)))
(R2 (pertenece ?E (?_ . ?Xs)) :- ((pertenece ?E ?Xs)))))
Then:
> (FIND-RULES (PERTENECE 1 (2 5)))
returns:
((R2 (PERTENECE ?E.1 (?_ . ?XS.2)) :- ((PERTENECE ?E.1 ?XS.2))))
That is, only the THEN of rule R2 unify with <hypothesis>
However,
> (FIND-RULES (PERTENECE 1 (1 6 7)))
returns:
((R1 (PERTENECE ?E.6 (?E.6 . ?_)))
(R2 (PERTENECE ?E.7 (?_ . ?XS.8)) :- ((PERTENECE ?E.7 ?XS.8))))
So the THEN of both rules unify with <hypothesis>
____________________________________________________________________________|#
(defun find-rules (hypothesis)
(mapcan #'(lambda(b) (let ((renamed-rule (rename-variables b)))
(when (in-then? hypothesis renamed-rule)
(list renamed-rule)))) *rule-list*))
(defun in-then? (hypothesis rule)
(unless (null (rule-then rule))
(not (equal +fail+ (unify hypothesis (rule-then rule))))))
#|____________________________________________________________________________
FUNCTION: VALUE-FROM-RULES
COMMENTS:
Returns all the solutions to <hypothesis> found using all the rules given in
the list <rules>. Note that a single rule can have multiple solutions.
____________________________________________________________________________|#
(defun value-from-rules (hypothesis rules)
(mapcan #'(lambda (r) (eval-rule hypothesis r)) rules))
(defun limpia-vinculos (termino bindings)
(unify termino (subst-bindings bindings termino)))
#|____________________________________________________________________________
FUNCTION: EVAL-RULE
COMMENTS:
Returns all the solutions found using the rule given as input argument.
EXAMPLES:
> (setq *rule-list*
'((R1 (pertenece ?E (?E . ?_)))
(R2 (pertenece ?E (?_ . ?Xs)) :- ((pertenece ?E ?Xs)))))
Then:
> (EVAL-RULE
(PERTENECE 1 (1 6 7))
(R1 (PERTENECE ?E.42 (?E.42 . ?_))))
returns:
(((NIL)))
That is, the query (PERTENECE 1 (1 6 7)) can be proven from the given rule, and
no binding in the variables in the query is necessary (in fact, the query has no variables).
On the other hand:
> (EVAL-RULE
(PERTENECE 1 (7))
(R2 (PERTENECE ?E.49 (?_ . ?XS.50)) :- ((PERTENECE ?E.49 ?XS.50))))
returns:
NIL
That is, the query can not be proven from the rule R2.
____________________________________________________________________________|#
(defun eval-rule (hypothesis rule)
(let ((bindings-then
(unify (rule-then rule) hypothesis)))
(unless (equal +fail+ bindings-then)
(if (rule-ifs rule)
(mapcar #'(lambda(b) (limpia-vinculos hypothesis (append bindings-then b)))
(consulta (subst-bindings bindings-then (rule-ifs rule))))
(list (limpia-vinculos hypothesis bindings-then))))))
(defun ask-user (hypothesis)
(let ((question hypothesis))
(cond
((variables-in question) +fail+)
((not-in-fact-list? question) +fail+)
(*mundo-abierto*
(format t "~%Es cierto el hecho ~S? (T/nil)" question)
(cond
((read) (add-fact question) +no-bindings+)
(T (add-fact (list 'NOT question)) +fail+)))
(T +fail+))))
; value-from-equality:
(defun value-from-equality (hypothesis)
(let ((new-bindings (unify (second hypothesis) (third hypothesis))))
(if (not (equal +fail+ new-bindings))
(list new-bindings))))
#|____________________________________________________________________________
FUNCTION: UNIFY
COMMENTS:
Finds the most general unifier of two input expressions, taking into account the
bindings specified in the input <bingings>
In case the two expressions can unify, the function returns the total bindings necessary
for that unification. Otherwise, returns +fail+
EXAMPLES:
> (unify '1 '1)
((NIL)) ;; which is the constant +no-bindings+
> (unify 1 '2)
nil ;; which is the constant +fail+
> (unify '?x 1)
((?x . 1))
> (unify '(1 1) ?x)
((? x 1 1))
> (unify '?_ '?x)
((NIL))
> (unify '(p ?x 1 2) '(p ?y ?_ ?_))
((?x . ?y))
> (unify '(?a . ?_) '(1 2 3))
((?a . 1))
> (unify '(?_ ?_) '(1 2))
((nil))
> (unify '(?a . ?b) '(1 2 3))
((?b 2 3) (?a . 1))
> (unify '(?a . ?b) '(?v . ?d))
((?b . ?d) (?a . ?v))
> (unify '(?eval (+ 1 1)) '1)
nil
> (unify '(?eval (+ 1 1)) '2)
(nil))
____________________________________________________________________________|#
(defun unify (x y &optional (bindings +no-bindings+))
"See if x and y match with given bindings. If they do,
return a binding list that would make them equal [p 303]."
(cond ((eq bindings +fail+) +fail+)
((eql x y) bindings)
((eval? x) (unify-eval x y bindings))
((eval? y) (unify-eval y x bindings))
((variable? x) (unify-var x y bindings))
((variable? y) (unify-var y x bindings))
((and (consp x) (consp y))
(unify (rest x) (rest y)
(unify (first x) (first y) bindings)))
(t +fail+)))
;; rename-variables: renombra ?X por ?X.1, ?Y por ?Y.2 etc. salvo ?_ que no se renombra
(defun rename-variables (x)
"Replace all variables in x with new ones. Excepto ?_"
(sublis (mapcar #'(lambda (var)
(if (anonymous-var? var)
(make-binding var var)
(make-binding var (new-variable var))))
(variables-in x))
x))
;;;; Auxiliary Functions
(defun unify-var (var x bindings)
"Unify var with x, using (and maybe extending) bindings [p 303]."
(cond ((or (anonymous-var? var)(anonymous-var? x)) bindings)
((get-binding var bindings)
(unify (lookup var bindings) x bindings))
((and (variable? x) (get-binding x bindings))
(unify var (lookup x bindings) bindings))
((occurs-in? var x bindings)
+fail+)
(t (extend-bindings var x bindings))))
(defun variable? (x)
"Is x a variable (a symbol starting with ?)?"
(and (symbolp x) (eql (char (symbol-name x) 0) #\?)))
(defun get-binding (var bindings)
"Find a (variable . value) pair in a binding list."
(assoc var bindings))
(defun binding-var (binding)
"Get the variable part of a single binding."
(car binding))
(defun binding-val (binding)
"Get the value part of a single binding."
(cdr binding))
(defun make-binding (var val) (cons var val))
(defun lookup (var bindings)
"Get the value part (for var) from a binding list."
(binding-val (get-binding var bindings)))
(defun extend-bindings (var val bindings)
"Add a (var . value) pair to a binding list."
(append
(unless (eq bindings +no-bindings+) bindings)
(list (make-binding var val))))
(defun occurs-in? (var x bindings)
"Does var occur anywhere inside x?"
(cond ((eq var x) t)
((and (variable? x) (get-binding x bindings))
(occurs-in? var (lookup x bindings) bindings))
((consp x) (or (occurs-in? var (first x) bindings)
(occurs-in? var (rest x) bindings)))
(t nil)))
(defun subst-bindings (bindings x)
"Substitute the value of variables in bindings into x,
taking recursively bound variables into account."
(cond ((eq bindings +fail+) +fail+)
((eq bindings +no-bindings+) x)
((and (listp x) (eq '?eval (car x)))
(subst-bindings-quote bindings x))
((and (variable? x) (get-binding x bindings))
(subst-bindings bindings (lookup x bindings)))
((atom x) x)
(t (cons (subst-bindings bindings (car x)) ;; s/reuse-cons/cons
(subst-bindings bindings (cdr x))))))
(defun unifier (x y)
"Return something that unifies with both x and y (or fail)."
(subst-bindings (unify x y) x))
(defun variables-in (exp)
"Return a list of all the variables in EXP."
(unique-find-anywhere-if #'variable? exp))
(defun unique-find-anywhere-if (predicate tree &optional found-so-far)
"Return a list of leaves of tree satisfying predicate,
with duplicates removed."
(if (atom tree)
(if (funcall predicate tree)
(pushnew tree found-so-far)
found-so-far)
(unique-find-anywhere-if
predicate
(first tree)
(unique-find-anywhere-if predicate (rest tree)
found-so-far))))
(defun find-anywhere-if (predicate tree)
"Does predicate apply to any atom in the tree?"
(if (atom tree)
(funcall predicate tree)
(or (find-anywhere-if predicate (first tree))
(find-anywhere-if predicate (rest tree)))))
(defun new-variable (var)
"Create a new variable. Assumes user never types variables of form ?X.9"
(gentemp (format nil "~S." var)))
; (gentemp "?") )
;;;
(defun anonymous-var? (x)
(eq x '?_))
(defun subst-bindings-quote (bindings x)
"Substitute the value of variables in bindings into x,
taking recursively bound variables into account."
(cond ((eq bindings +fail+) +fail+)
((eq bindings +no-bindings+) x)
((and (variable? x) (get-binding x bindings))
(if (variable? (lookup x bindings))
(subst-bindings-quote bindings (lookup x bindings))
(subst-bindings-quote bindings (list 'quote (lookup x bindings)))
)
)
((atom x) x)
(t (cons (subst-bindings-quote bindings (car x)) ;; s/reuse-cons/cons
(subst-bindings-quote bindings (cdr x))))))
(defun eval? (x)
(and (consp x) (eq (first x) '?eval)))
(defun unify-eval (x y bindings)
(let ((exp (subst-bindings-quote bindings (second x))))
(if (variables-in exp)
+fail+
(unify (eval exp) y bindings))))
(defun rule-ifs (rule) (fourth rule))
(defun rule-then (rule) (second rule))
(defun equality? (term)
(and (consp term) (eql (first term) '?=)))
(defun in-fact-list? (expresion)
(some #'(lambda(x) (equal x expresion)) *fact-list*))
(defun not-in-fact-list? (expresion)
(if (eq (car expresion) 'NOT)
(in-fact-list? (second expresion))
(in-fact-list? (list 'NOT expresion))))
;; add-fact:
(defun add-fact (fact)
(setq *fact-list* (cons fact *fact-list*)))
(defun variable? (x)
"Is x a variable (a symbol starting with ?) except ?eval and ?="
(and (not (equal x '?eval)) (not (equal x '?=))
(symbolp x) (eql (char (symbol-name x) 0) #\?)))
;; EOF

View File

@@ -0,0 +1,169 @@
#!/usr/bin/env bin/crystal --run
require "../../spec_helper"
describe "Codegen: const" do
it "define a constant" do
run("A = 1; A").to_i.should eq(1)
end
it "support nested constant" do
run("class B; A = 1; end; B::A").to_i.should eq(1)
end
it "support constant inside a def" do
run("
class Foo
A = 1
def foo
A
end
end
Foo.new.foo
").to_i.should eq(1)
end
it "finds nearest constant first" do
run("
A = 1
class Foo
A = 2.5_f32
def foo
A
end
end
Foo.new.foo
").to_f32.should eq(2.5)
end
it "allows constants with same name" do
run("
A = 1
class Foo
A = 2.5_f32
def foo
A
end
end
A
Foo.new.foo
").to_f32.should eq(2.5)
end
it "constants with expression" do
run("
A = 1 + 1
A
").to_i.should eq(2)
end
it "finds global constant" do
run("
A = 1
class Foo
def foo
A
end
end
Foo.new.foo
").to_i.should eq(1)
end
it "define a constant in lib" do
run("lib Foo; A = 1; end; Foo::A").to_i.should eq(1)
end
it "invokes block in const" do
run("require \"prelude\"; A = [\"1\"].map { |x| x.to_i }; A[0]").to_i.should eq(1)
end
it "declare constants in right order" do
run("A = 1 + 1; B = true ? A : 0; B").to_i.should eq(2)
end
it "uses correct types lookup" do
run("
module A
class B
def foo
1
end
end
C = B.new;
end
def foo
A::C.foo
end
foo
").to_i.should eq(1)
end
it "codegens variable assignment in const" do
run("
class Foo
def initialize(@x)
end
def x
@x
end
end
A = begin
f = Foo.new(1)
f
end
def foo
A.x
end
foo
").to_i.should eq(1)
end
it "declaring var" do
run("
BAR = begin
a = 1
while 1 == 2
b = 2
end
a
end
class Foo
def compile
BAR
end
end
Foo.new.compile
").to_i.should eq(1)
end
it "initialize const that might raise an exception" do
run("
require \"prelude\"
CONST = (raise \"OH NO\" if 1 == 2)
def doit
CONST
rescue
end
doit.nil?
").to_b.should be_true
end
end

View File

@@ -0,0 +1,79 @@
#!/usr/bin/env bin/crystal --run
require "../../spec_helper"
describe "Type inference: declare var" do
it "types declare var" do
assert_type("a :: Int32") { int32 }
end
it "types declare var and reads it" do
assert_type("a :: Int32; a") { int32 }
end
it "types declare var and changes its type" do
assert_type("a :: Int32; while 1 == 2; a = 'a'; end; a") { union_of(int32, char) }
end
it "declares instance var which appears in initialize" do
result = assert_type("
class Foo
@x :: Int32
end
Foo.new") { types["Foo"] }
mod = result.program
foo = mod.types["Foo"] as NonGenericClassType
foo.instance_vars["@x"].type.should eq(mod.int32)
end
it "declares instance var of generic class" do
result = assert_type("
class Foo(T)
@x :: T
end
Foo(Int32).new") do
foo = types["Foo"] as GenericClassType
foo_i32 = foo.instantiate([int32] of Type | ASTNode)
foo_i32.lookup_instance_var("@x").type.should eq(int32)
foo_i32
end
end
it "declares instance var of generic class after reopen" do
result = assert_type("
class Foo(T)
end
f = Foo(Int32).new
class Foo(T)
@x :: T
end
f") do
foo = types["Foo"] as GenericClassType
foo_i32 = foo.instantiate([int32] of Type | ASTNode)
foo_i32.lookup_instance_var("@x").type.should eq(int32)
foo_i32
end
end
it "declares an instance variable in initialize" do
assert_type("
class Foo
def initialize
@x :: Int32
end
def x
@x
end
end
Foo.new.x
") { int32 }
end
end

View File

@@ -0,0 +1,515 @@
module Crystal
class ASTNode
def transform(transformer)
transformer.before_transform self
node = transformer.transform self
transformer.after_transform self
node
end
end
class Transformer
def before_transform(node)
end
def after_transform(node)
end
def transform(node : Expressions)
exps = [] of ASTNode
node.expressions.each do |exp|
new_exp = exp.transform(self)
if new_exp
if new_exp.is_a?(Expressions)
exps.concat new_exp.expressions
else
exps << new_exp
end
end
end
if exps.length == 1
exps[0]
else
node.expressions = exps
node
end
end
def transform(node : Call)
if node_obj = node.obj
node.obj = node_obj.transform(self)
end
transform_many node.args
if node_block = node.block
node.block = node_block.transform(self)
end
if node_block_arg = node.block_arg
node.block_arg = node_block_arg.transform(self)
end
node
end
def transform(node : And)
node.left = node.left.transform(self)
node.right = node.right.transform(self)
node
end
def transform(node : Or)
node.left = node.left.transform(self)
node.right = node.right.transform(self)
node
end
def transform(node : StringInterpolation)
transform_many node.expressions
node
end
def transform(node : ArrayLiteral)
transform_many node.elements
if node_of = node.of
node.of = node_of.transform(self)
end
node
end
def transform(node : HashLiteral)
transform_many node.keys
transform_many node.values
if of_key = node.of_key
node.of_key = of_key.transform(self)
end
if of_value = node.of_value
node.of_value = of_value.transform(self)
end
node
end
def transform(node : If)
node.cond = node.cond.transform(self)
node.then = node.then.transform(self)
node.else = node.else.transform(self)
node
end
def transform(node : Unless)
node.cond = node.cond.transform(self)
node.then = node.then.transform(self)
node.else = node.else.transform(self)
node
end
def transform(node : IfDef)
node.cond = node.cond.transform(self)
node.then = node.then.transform(self)
node.else = node.else.transform(self)
node
end
def transform(node : MultiAssign)
transform_many node.targets
transform_many node.values
node
end
def transform(node : SimpleOr)
node.left = node.left.transform(self)
node.right = node.right.transform(self)
node
end
def transform(node : Def)
transform_many node.args
node.body = node.body.transform(self)
if receiver = node.receiver
node.receiver = receiver.transform(self)
end
if block_arg = node.block_arg
node.block_arg = block_arg.transform(self)
end
node
end
def transform(node : Macro)
transform_many node.args
node.body = node.body.transform(self)
if receiver = node.receiver
node.receiver = receiver.transform(self)
end
if block_arg = node.block_arg
node.block_arg = block_arg.transform(self)
end
node
end
def transform(node : PointerOf)
node.exp = node.exp.transform(self)
node
end
def transform(node : SizeOf)
node.exp = node.exp.transform(self)
node
end
def transform(node : InstanceSizeOf)
node.exp = node.exp.transform(self)
node
end
def transform(node : IsA)
node.obj = node.obj.transform(self)
node.const = node.const.transform(self)
node
end
def transform(node : RespondsTo)
node.obj = node.obj.transform(self)
node
end
def transform(node : Case)
node.cond = node.cond.transform(self)
transform_many node.whens
if node_else = node.else
node.else = node_else.transform(self)
end
node
end
def transform(node : When)
transform_many node.conds
node.body = node.body.transform(self)
node
end
def transform(node : ImplicitObj)
node
end
def transform(node : ClassDef)
node.body = node.body.transform(self)
if superclass = node.superclass
node.superclass = superclass.transform(self)
end
node
end
def transform(node : ModuleDef)
node.body = node.body.transform(self)
node
end
def transform(node : While)
node.cond = node.cond.transform(self)
node.body = node.body.transform(self)
node
end
def transform(node : Generic)
node.name = node.name.transform(self)
transform_many node.type_vars
node
end
def transform(node : ExceptionHandler)
node.body = node.body.transform(self)
transform_many node.rescues
if node_ensure = node.ensure
node.ensure = node_ensure.transform(self)
end
node
end
def transform(node : Rescue)
node.body = node.body.transform(self)
transform_many node.types
node
end
def transform(node : Union)
transform_many node.types
node
end
def transform(node : Hierarchy)
node.name = node.name.transform(self)
node
end
def transform(node : Metaclass)
node.name = node.name.transform(self)
node
end
def transform(node : Arg)
if default_value = node.default_value
node.default_value = default_value.transform(self)
end
if restriction = node.restriction
node.restriction = restriction.transform(self)
end
node
end
def transform(node : BlockArg)
node.fun = node.fun.transform(self)
node
end
def transform(node : Fun)
transform_many node.inputs
if output = node.output
node.output = output.transform(self)
end
node
end
def transform(node : Block)
node.args.map! { |exp| exp.transform(self) as Var }
node.body = node.body.transform(self)
node
end
def transform(node : FunLiteral)
node.def.body = node.def.body.transform(self)
node
end
def transform(node : FunPointer)
if obj = node.obj
node.obj = obj.transform(self)
end
node
end
def transform(node : Return)
transform_many node.exps
node
end
def transform(node : Break)
transform_many node.exps
node
end
def transform(node : Next)
transform_many node.exps
node
end
def transform(node : Yield)
if scope = node.scope
node.scope = scope.transform(self)
end
transform_many node.exps
node
end
def transform(node : Include)
node.name = node.name.transform(self)
node
end
def transform(node : Extend)
node.name = node.name.transform(self)
node
end
def transform(node : RangeLiteral)
node.from = node.from.transform(self)
node.to = node.to.transform(self)
node
end
def transform(node : Assign)
node.target = node.target.transform(self)
node.value = node.value.transform(self)
node
end
def transform(node : Nop)
node
end
def transform(node : NilLiteral)
node
end
def transform(node : BoolLiteral)
node
end
def transform(node : NumberLiteral)
node
end
def transform(node : CharLiteral)
node
end
def transform(node : StringLiteral)
node
end
def transform(node : SymbolLiteral)
node
end
def transform(node : RegexLiteral)
node
end
def transform(node : Var)
node
end
def transform(node : MetaVar)
node
end
def transform(node : InstanceVar)
node
end
def transform(node : ClassVar)
node
end
def transform(node : Global)
node
end
def transform(node : Require)
node
end
def transform(node : Path)
node
end
def transform(node : Self)
node
end
def transform(node : LibDef)
node.body = node.body.transform(self)
node
end
def transform(node : FunDef)
if body = node.body
node.body = body.transform(self)
end
node
end
def transform(node : TypeDef)
node
end
def transform(node : StructDef)
node
end
def transform(node : UnionDef)
node
end
def transform(node : EnumDef)
node
end
def transform(node : ExternalVar)
node
end
def transform(node : IndirectRead)
node.obj = node.obj.transform(self)
node
end
def transform(node : IndirectWrite)
node.obj = node.obj.transform(self)
node.value = node.value.transform(self)
node
end
def transform(node : TypeOf)
transform_many node.expressions
node
end
def transform(node : Primitive)
node
end
def transform(node : Not)
node
end
def transform(node : TypeFilteredNode)
node
end
def transform(node : TupleLiteral)
transform_many node.exps
node
end
def transform(node : Cast)
node.obj = node.obj.transform(self)
node.to = node.to.transform(self)
node
end
def transform(node : DeclareVar)
node.var = node.var.transform(self)
node.declared_type = node.declared_type.transform(self)
node
end
def transform(node : Alias)
node.value = node.value.transform(self)
node
end
def transform(node : TupleIndexer)
node
end
def transform(node : Attribute)
node
end
def transform_many(exps)
exps.map! { |exp| exp.transform(self) } if exps
end
end
end

31
samples/E/Extends.E Normal file
View File

@@ -0,0 +1,31 @@
# from
# http://wiki.erights.org/wiki/Walnut/Ordinary_Programming/Objects_and_Functions
def makeVehicle(self) {
def vehicle {
to milesTillEmpty() {
return self.milesPerGallon() * self.getFuelRemaining()
}
}
return vehicle
}
def makeCar() {
var fuelRemaining := 20
def car extends makeVehicle(car) {
to milesPerGallon() {return 19}
to getFuelRemaining() {return fuelRemaining}
}
return car
}
def makeJet() {
var fuelRemaining := 2000
def jet extends makeVehicle(jet) {
to milesPerGallon() {return 2}
to getFuelRemaining() {return fuelRemaining}
}
return jet
}
def car := makeCar()
println(`The car can go ${car.milesTillEmpty()} miles.`)

21
samples/E/Functions.E Normal file
View File

@@ -0,0 +1,21 @@
# from
# http://wiki.erights.org/wiki/Walnut/Ordinary_Programming/Objects_and_Functions
def makeCar(var name) {
var x := 0
var y := 0
def car {
to moveTo(newX,newY) {
x := newX
y := newY
}
to getX() {return x}
to getY() {return y}
to setName(newName) {name := newName}
to getName() {return name}
}
return car
}
# Now use the makeCar function to make a car, which we will move and print
def sportsCar := makeCar("Ferrari")
sportsCar.moveTo(10,20)
println(`The car ${sportsCar.getName()} is at X location ${sportsCar.getX()}`)

69
samples/E/Guards.E Normal file
View File

@@ -0,0 +1,69 @@
# from
# http://wiki.erights.org/wiki/Walnut/Advanced_Topics/Build_your_Own_Guards
def makeVOCPair(brandName :String) :near {
var myTempContents := def none {}
def brand {
to __printOn(out :TextWriter) :void {
out.print(brandName)
}
}
def ProveAuth {
to __printOn(out :TextWriter) :void {
out.print(`<$brandName prover>`)
}
to getBrand() :near { return brand }
to coerce(specimen, optEjector) :near {
def sealedBox {
to getBrand() :near { return brand }
to offerContent() :void {
myTempContents := specimen
}
}
return sealedBox
}
}
def CheckAuth {
to __printOn(out :TextWriter) :void {
out.print(`<$brandName checker template>`)
}
to getBrand() :near { return brand }
match [`get`, authList :any[]] {
def checker {
to __printOn(out :TextWriter) :void {
out.print(`<$brandName checker>`)
}
to getBrand() :near { return brand }
to coerce(specimenBox, optEjector) :any {
myTempContents := null
if (specimenBox.__respondsTo("offerContent", 0)) {
# XXX Using __respondsTo/2 here is a kludge
specimenBox.offerContent()
} else {
myTempContents := specimenBox
}
for auth in authList {
if (auth == myTempContents) {
return auth
}
}
myTempContents := none
throw.eject(optEjector,
`Unmatched $brandName authorization`)
}
}
}
match [`__respondsTo`, [`get`, _]] {
true
}
match [`__respondsTo`, [_, _]] {
false
}
match [`__getAllegedType`, []] {
null.__getAllegedType()
}
}
return [ProveAuth, CheckAuth]
}

14
samples/E/IO.E Normal file
View File

@@ -0,0 +1,14 @@
# E sample from
# http://wiki.erights.org/wiki/Walnut/Ordinary_Programming/InputOutput
#File objects for hardwired files:
def file1 := <file:myFile.txt>
def file2 := <file:/home/marcs/myFile.txt>
#Using a variable for a file name:
def filePath := "c:\\docs\\myFile.txt"
def file3 := <file>[filePath]
#Using a single character to specify a Windows drive
def file4 := <file:c:/docs/myFile.txt>
def file5 := <c:/docs/myFile.txt>
def file6 := <c:\docs\myFile.txt>

9
samples/E/Promises.E Normal file
View File

@@ -0,0 +1,9 @@
# E snippet from
# http://wiki.erights.org/wiki/Walnut/Distributed_Computing/Promises
when (tempVow) -> {
#...use tempVow
} catch prob {
#.... report problem
} finally {
#....log event
}

18
samples/E/minChat.E Normal file
View File

@@ -0,0 +1,18 @@
# from
# http://wiki.erights.org/wiki/Walnut/Secure_Distributed_Computing/Auditing_minChat
pragma.syntax("0.9")
to send(message) {
when (friend<-receive(message)) -> {
chatUI.showMessage("self", message)
} catch prob {chatUI.showMessage("system", "connection lost")}
}
to receive(message) {chatUI.showMessage("friend", message)}
to receiveFriend(friendRcvr) {
bind friend := friendRcvr
chatUI.showMessage("system", "friend has arrived")
}
to save(file) {file.setText(makeURIFromObject(chatController))}
to load(file) {
bind friend := getObjectFromURI(file.getText())
friend <- receiveFriend(chatController)
}

1396
samples/Eagle/Eagle.brd Normal file

File diff suppressed because it is too large Load Diff

3612
samples/Eagle/Eagle.sch Normal file

File diff suppressed because it is too large Load Diff

307
samples/GAP/Magic.gd Normal file
View File

@@ -0,0 +1,307 @@
#############################################################################
##
## Magic.gd AutoDoc package
##
## Copyright 2013, Max Horn, JLU Giessen
## Sebastian Gutsche, University of Kaiserslautern
##
#############################################################################
#! @Description
#! This is the main function of the &AutoDoc; package. It can perform
#! any combination of the following three tasks:
#! <Enum>
#! <Item>
#! It can (re)generate a scaffold for your package manual.
#! That is, it can produce two XML files in &GAPDoc; format to be used as part
#! of your manual: First, a file named <F>doc/PACKAGENAME.xml</F>
#! (with your package's name substituted) which is used as
#! main file for the package manual, i.e. this file sets the
#! XML DOCTYPE and defines various XML entities, includes
#! other XML files (both those generated by &AutoDoc; as well
#! as additional files created by other means), tells &GAPDoc;
#! to generate a table of content and an index, and more.
#! Secondly, it creates a file <F>doc/title.xml</F> containing a title
#! page for your documentation, with information about your package
#! (name, description, version), its authors and more, based
#! on the data in your <F>PackageInfo.g</F>.
#! </Item>
#! <Item>
#! It can scan your package for &AutoDoc; based documentation (by using &AutoDoc;
#! tags and the Autodoc command.
#! This will
#! produce further XML files to be used as part of the package manual.
#! </Item>
#! <Item>
#! It can use &GAPDoc; to generate PDF, text and HTML (with
#! MathJaX enabled) documentation from the &GAPDoc; XML files it
#! generated as well as additional such files provided by you. For
#! this, it invokes <Ref Func='MakeGAPDocDoc' BookName='gapdoc'/>
#! to convert the XML sources, and it also instructs &GAPDoc; to copy
#! supplementary files (such as CSS style files) into your doc directory
#! (see <Ref Func='CopyHTMLStyleFiles' BookName='gapdoc'/>).
#! </Item>
#! </Enum>
#! For more information and some examples, please refer to Chapter <Ref Label='Tutorials'/>.
#! <P/>
#! The parameters have the following meanings:
#! <List>
#!
#! <Mark><A>package_name</A></Mark>
#! <Item>
#! The name of the package whose documentation should be(re)generated.
#! </Item>
#!
#!
#! <Mark><A>option_record</A></Mark>
#! <Item>
#! <A>option_record</A> can be a record with some additional options.
#! The following are currently supported:
#! <List>
#! <Mark><A>dir</A></Mark>
#! <Item>
#! This should be a string containing a (relative) path or a
#! Directory() object specifying where the package documentation
#! (i.e. the &GAPDoc; XML files) are stored.
#! <Br/>
#! <E>Default value: <C>"doc/"</C>.</E>
#! </Item>
#! <Mark><A>scaffold</A></Mark>
#! <Item>
#! This controls whether and how to generate scaffold XML files
#! for the main and title page of the package's documentation.
#! <P/>
#! The value should be either <K>true</K>, <K>false</K> or a
#! record. If it is a record or <K>true</K> (the latter is
#! equivalent to specifying an empty record), then this feature is
#! enabled. It is also enabled if <A>opt.scaffold</A> is missing but the
#! package's info record in <F>PackageInfo.g</F> has an <C>AutoDoc</C> entry.
#! In all other cases (in particular if <A>opt.scaffold</A> is
#! <K>false</K>), scaffolding is disabled.
#! <P/>
#!
#! If <A>opt.scaffold</A> is a record, it may contain the following entries.
#!
#### TODO: mention merging with PackageInfo.AutoDoc!
#! <List>
#!
#! <Mark><A>includes</A></Mark>
#! <Item>
#! A list of XML files to be included in the body of the main XML file.
#! If you specify this list and also are using &AutoDoc; to document
#! your operations with &AutoDoc; comments,
#! you can add <F>AutoDocMainFile.xml</F> to this list
#! to control at which point the documentation produced by &AutoDoc;
#! is inserted. If you do not do this, it will be added after the last
#! of your own XML files.
#! </Item>
#!
#! <Mark><A>appendix</A></Mark>
#! <Item>
#! This entry is similar to <A>opt.scaffold.includes</A> but is used
#! to specify files to include after the main body of the manual,
#! i.e. typically appendices.
#! </Item>
#!
#! <Mark><A>bib</A></Mark>
#! <Item>
#! The name of a bibliography file, in Bibtex or XML format.
#! If this key is not set, but there is a file <F>doc/PACKAGENAME.bib</F>
#! then it is assumed that you want to use this as your bibliography.
#! </Item>
#!
#### TODO: The 'entities' param is a bit strange. We should probably change it to be a bit more
#### general, as one might want to define other entities... For now, we do not document it
#### to leave us the choice of revising how it works.
####
#### <Mark><A>entities</A></Mark>
#### <Item>
#### A list of package names or other entities which are used to define corresponding XML entities.
#### For example, if set to a list containing the string <Q>SomePackage</Q>,
#### then the following is added to the XML preamble:
#### <Listing><![CDATA[<!ENTITY SomePackage '<Package>SomePackage</Package>'>]]></Listing>
#### This allows you to write <Q>&amp;SomePackage;</Q> in your documentation
#### to reference that package. If another type of entity is desired, one can simply add,
#### instead of a string, add a two entry list <A>a</A> to the list. It will be handled as
#### <Listing><![CDATA[<!ENTITY a[ 2 ] '<a[ 1 ]>a[ 2 ]</a[ 1 ]>'>]]></Listing>,
#### so please be careful.
#### </Item>
#!
#! <Mark><A>TitlePage</A></Mark>
#! <Item>
#! A record whose entries are used to embellish the generated titlepage
#! for the package manual with extra information, such as a copyright
#! statement or acknowledgments. To this end, the names of the record
#! components are used as XML element names, and the values of the
#! components are outputted as content of these XML elements. For
#! example, you could pass the following record to set a custom
#! acknowledgements text:
#! <Listing><![CDATA[
#! rec( Acknowledgements := "Many thanks to ..." )]]></Listing>
#! For a list of valid entries in the titlepage, please refer to the
#! &GAPDoc; manual, specifically section <Ref Subsect='Title' BookName='gapdoc'/>
#! and following.
#! </Item>
#! <Mark><A>document_class</A></Mark>
#! <Item>
#! Sets the document class of the resulting pdf. The value can either be a string
#! which has to be the name of the new document class, a list containing this string, or
#! a list of two strings. Then the first one has to be the document class name, the second one
#! the option string ( contained in [ ] ) in LaTeX.
#! </Item>
#! <Mark><A>latex_header_file</A></Mark>
#! <Item>
#! Replaces the standard header from &GAPDoc; completely with the header in this LaTeX file.
#! Please be careful here, and look at GAPDoc's latexheader.tex file for an example.
#! </Item>
#! <Mark><A>gapdoc_latex_options</A></Mark>
#! <Item>
#! Must be a record with entries which can be understood by SetGapDocLaTeXOptions. Each entry can be a string, which
#! will be given to &GAPDoc; directly, or a list containing of two entries: The first one must be the string "file",
#! the second one a filename. This file will be read and then its content is passed to &GAPDoc; as option with the name
#! of the entry.
#! </Item>
#!
#! </List>
#! </Item>
#!
#!
#! <Mark><A>autodoc</A></Mark>
#! <Item>
#! This controls whether and how to generate addition XML documentation files
#! by scanning for &AutoDoc; documentation comments.
#! <P/>
#! The value should be either <K>true</K>, <K>false</K> or a
#! record. If it is a record or <K>true</K> (the latter is
#! equivalent to specifying an empty record), then this feature is
#! enabled. It is also enabled if <A>opt.autodoc</A> is missing but the
#! package depends (directly) on the &AutoDoc; package.
#! In all other cases (in particular if <A>opt.autodoc</A> is
#! <K>false</K>), this feature is disabled.
#! <P/>
#!
#! If <A>opt.autodoc</A> is a record, it may contain the following entries.
#!
#! <List>
#!
#! <Mark><A>files</A></Mark>
#! <Item>
#! A list of files (given by paths relative to the package directory)
#! to be scanned for &AutoDoc; documentation comments.
#! Usually it is more convenient to use <A>autodoc.scan_dirs</A>, see below.
#! </Item>
#!
#! <Mark><A>scan_dirs</A></Mark>
#! <Item>
#! A list of subdirectories of the package directory (given as relative paths)
#! which &AutoDoc; then scans for .gi, .gd and .g files; all of these files
#! are then scanned for &AutoDoc; documentation comments.
#! <Br/>
#! <E>Default value: <C>[ "gap", "lib", "examples", "examples/doc" ]</C>.</E>
#! </Item>
#!
#! <Mark><A>level</A></Mark>
#! <Item>
#! This defines the level of the created documentation. The default value is 0.
#! When parts of the manual are declared with a higher value
#! they will not be printed into the manual.
#! </Item>
#!
#### TODO: Document section_intros later on.
#### However, note that thanks to the new AutoDoc comment syntax, the only remaining
#### use for this seems to be the ability to specify the order of chapters and
#### sections.
#### <Mark><A>section_intros</A></Mark>
#### <Item>
#### TODO.
#### </Item>
#!
#! </List>
#! </Item>
#!
#!
#! <Mark><A>gapdoc</A></Mark>
#! <Item>
#! This controls whether and how to invoke &GAPDoc; to create HTML, PDF and text
#! files from your various XML files.
#! <P/>
#! The value should be either <K>true</K>, <K>false</K> or a
#! record. If it is a record or <K>true</K> (the latter is
#! equivalent to specifying an empty record), then this feature is
#! enabled. It is also enabled if <A>opt.gapdoc</A> is missing.
#! In all other cases (in particular if <A>opt.gapdoc</A> is
#! <K>false</K>), this feature is disabled.
#! <P/>
#!
#! If <A>opt.gapdoc</A> is a record, it may contain the following entries.
#!
#! <List>
#!
#!
#### Note: 'main' is strictly speaking also used for the scaffold.
#### However, if one uses the scaffolding mechanism, then it is not
#### really necessary to specify a custom name for the main XML file.
#### Thus, the purpose of this parameter is to cater for packages
#### that have existing documentation using a different XML name,
#### and which do not wish to use scaffolding.
####
#### This explain why we only allow specifying gapdoc.main.
#### The scaffolding code will still honor it, though, just in case.
#! <Mark><A>main</A></Mark>
#! <Item>
#! The name of the main XML file of the package manual.
#! This exists primarily to support packages with existing manual
#! which use a filename here which differs from the default.
#! In particular, specifying this is unnecessary when using scaffolding.
#! <Br/>
#! <E>Default value: <C>PACKAGENAME.xml</C></E>.
#! </Item>
#!
#! <Mark><A>files</A></Mark>
#! <Item>
#! A list of files (given by paths relative to the package directory)
#! to be scanned for &GAPDoc; documentation comments.
#! Usually it is more convenient to use <A>gapdoc.scan_dirs</A>, see below.
#! </Item>
#!
#! <Mark><A>scan_dirs</A></Mark>
#! <Item>
#! A list of subdirectories of the package directory (given as relative paths)
#! which &AutoDoc; then scans for .gi, .gd and .g files; all of these files
#! are then scanned for &GAPDoc; documentation comments.
#! <Br/>
#! <E>Default value: <C>[ "gap", "lib", "examples", "examples/doc" ]</C>.</E>
#! </Item>
#!
#! </List>
#! </Item>
## This is the maketest part. Still under construction.
#! <Mark><A>maketest</A></Mark>
#! <Item>
#! The maketest item can be true or a record. When it is true,
#! a simple maketest.g is created in the main package directory,
#! which can be used to test the examples from the manual. As a record,
#! the entry can have the following entries itself, to specify some options.
#! <List>
#! <Mark>filename</Mark>
#! <Item>
#! Sets the name of the test file.
#! </Item>
#! <Mark>commands</Mark>
#! <Item>
#! A list of strings, each one a command, which
#! will be executed at the beginning of the test file.
#! </Item>
#! </List>
#! </Item>
#!
#! </List>
#! </Item>
#! </List>
#!
#! @Returns nothing
#! @Arguments package_name[, option_record ]
#! @ChapterInfo AutoDoc, The AutoDoc() function
DeclareGlobalFunction( "AutoDoc" );

534
samples/GAP/Magic.gi Normal file
View File

@@ -0,0 +1,534 @@
#############################################################################
##
## Magic.gi AutoDoc package
##
## Copyright 2013, Max Horn, JLU Giessen
## Sebastian Gutsche, University of Kaiserslautern
##
#############################################################################
# Check if a string has the given suffix or not. Another
# name for this would "StringEndsWithOtherString".
# For example, AUTODOC_HasSuffix("file.gi", ".gi") returns
# true while AUTODOC_HasSuffix("file.txt", ".gi") returns false.
BindGlobal( "AUTODOC_HasSuffix",
function(str, suffix)
local n, m;
n := Length(str);
m := Length(suffix);
return n >= m and str{[n-m+1..n]} = suffix;
end );
# Given a string containing a ".", , return its suffix,
# i.e. the bit after the last ".". For example, given "test.txt",
# it returns "txt".
BindGlobal( "AUTODOC_GetSuffix",
function(str)
local i;
i := Length(str);
while i > 0 and str[i] <> '.' do i := i - 1; od;
if i < 0 then return ""; fi;
return str{[i+1..Length(str)]};
end );
# Check whether the given directory exists, and if not, attempt
# to create it.
BindGlobal( "AUTODOC_CreateDirIfMissing",
function(d)
local tmp;
if not IsDirectoryPath(d) then
tmp := CreateDir(d); # Note: CreateDir is currently undocumented
if tmp = fail then
Error("Cannot create directory ", d, "\n",
"Error message: ", LastSystemError().message, "\n");
return false;
fi;
fi;
return true;
end );
# Scan the given (by name) subdirs of a package dir for
# files with one of the given extensions, and return the corresponding
# filenames, as relative paths (relative to the package dir).
#
# For example, the invocation
# AUTODOC_FindMatchingFiles("AutoDoc", [ "gap/" ], [ "gi", "gd" ]);
# might return a list looking like
# [ "gap/AutoDocMainFunction.gd", "gap/AutoDocMainFunction.gi", ... ]
BindGlobal( "AUTODOC_FindMatchingFiles",
function (pkg, subdirs, extensions)
local d_rel, d, tmp, files, result;
result := [];
for d_rel in subdirs do
# Get the absolute path to the directory in side the package...
d := DirectoriesPackageLibrary( pkg, d_rel );
if IsEmpty( d ) then
continue;
fi;
d := d[1];
# ... but also keep the relative path (such as "gap")
d_rel := Directory( d_rel );
files := DirectoryContents( d );
Sort( files );
for tmp in files do
if not AUTODOC_GetSuffix( tmp ) in [ "g", "gi", "gd", "autodoc" ] then
continue;
fi;
if not IsReadableFile( Filename( d, tmp ) ) then
continue;
fi;
Add( result, Filename( d_rel, tmp ) );
od;
od;
return result;
end );
# AutoDoc(pkg[, opt])
#
## Make this function callable with the package_name AutoDocWorksheet.
## Which will then create a worksheet!
InstallGlobalFunction( AutoDoc,
function( arg )
local pkg, package_info, opt, scaffold, gapdoc, maketest,
autodoc, pkg_dir, doc_dir, doc_dir_rel, d, tmp,
title_page, tree, is_worksheet, position_document_class, i, gapdoc_latex_option_record;
pkg := arg[1];
if LowercaseString( pkg ) = "autodocworksheet" then
is_worksheet := true;
package_info := rec( );
pkg_dir := DirectoryCurrent( );
else
is_worksheet := false;
package_info := PackageInfo( pkg )[ 1 ];
pkg_dir := DirectoriesPackageLibrary( pkg, "" )[1];
fi;
if Length(arg) >= 2 then
opt := arg[2];
else
opt := rec();
fi;
# Check for certain user supplied options, and if present, add them
# to the opt record.
tmp := function( key )
local val;
val := ValueOption( key );
if val <> fail then
opt.(key) := val;
fi;
end;
tmp( "dir" );
tmp( "scaffold" );
tmp( "autodoc" );
tmp( "gapdoc" );
tmp( "maketest" );
#
# Setup the output directory
#
if not IsBound( opt.dir ) then
doc_dir := "doc";
elif IsString( opt.dir ) or IsDirectory( opt.dir ) then
doc_dir := opt.dir;
else
Error( "opt.dir must be a string containing a path, or a directory object" );
fi;
if IsString( doc_dir ) then
# Record the relative version of the path
doc_dir_rel := Directory( doc_dir );
# We intentionally do not use
# DirectoriesPackageLibrary( pkg, "doc" )
# because it returns an empty list if the subdirectory is missing.
# But we want to handle that case by creating the directory.
doc_dir := Filename(pkg_dir, doc_dir);
doc_dir := Directory(doc_dir);
else
# TODO: doc_dir_rel = ... ?
fi;
# Ensure the output directory exists, create it if necessary
AUTODOC_CreateDirIfMissing(Filename(doc_dir, ""));
# Let the developer know where we are generating the documentation.
# This helps diagnose problems where multiple instances of a package
# are visible to GAP and the wrong one is used for generating the
# documentation.
# TODO: Using Info() instead of Print?
Print( "Generating documentation in ", doc_dir, "\n" );
#
# Extract scaffolding settings, which can be controlled via
# opt.scaffold or package_info.AutoDoc. The former has precedence.
#
if not IsBound(opt.scaffold) then
# Default: enable scaffolding if and only if package_info.AutoDoc is present
if IsBound( package_info.AutoDoc ) then
scaffold := rec( );
fi;
elif IsRecord(opt.scaffold) then
scaffold := opt.scaffold;
elif IsBool(opt.scaffold) then
if opt.scaffold = true then
scaffold := rec();
fi;
else
Error("opt.scaffold must be a bool or a record");
fi;
# Merge package_info.AutoDoc into scaffold
if IsBound(scaffold) and IsBound( package_info.AutoDoc ) then
AUTODOC_APPEND_RECORD_WRITEONCE( scaffold, package_info.AutoDoc );
fi;
if IsBound( scaffold ) then
AUTODOC_WriteOnce( scaffold, "TitlePage", true );
AUTODOC_WriteOnce( scaffold, "MainPage", true );
fi;
#
# Extract AutoDoc settings
#
if not IsBound(opt.autodoc) and not is_worksheet then
# Enable AutoDoc support if the package depends on AutoDoc.
tmp := Concatenation( package_info.Dependencies.NeededOtherPackages,
package_info.Dependencies.SuggestedOtherPackages );
if ForAny( tmp, x -> LowercaseString(x[1]) = "autodoc" ) then
autodoc := rec();
fi;
elif IsRecord(opt.autodoc) then
autodoc := opt.autodoc;
elif IsBool(opt.autodoc) and opt.autodoc = true then
autodoc := rec();
fi;
if IsBound(autodoc) then
if not IsBound( autodoc.files ) then
autodoc.files := [ ];
fi;
if not IsBound( autodoc.scan_dirs ) and not is_worksheet then
autodoc.scan_dirs := [ "gap", "lib", "examples", "examples/doc" ];
elif not IsBound( autodoc.scan_dirs ) and is_worksheet then
autodoc.scan_dirs := [ ];
fi;
if not IsBound( autodoc.level ) then
autodoc.level := 0;
fi;
PushOptions( rec( level_value := autodoc.level ) );
if not is_worksheet then
Append( autodoc.files, AUTODOC_FindMatchingFiles(pkg, autodoc.scan_dirs, [ "g", "gi", "gd" ]) );
fi;
fi;
#
# Extract GAPDoc settings
#
if not IsBound( opt.gapdoc ) then
# Enable GAPDoc support by default
gapdoc := rec();
elif IsRecord( opt.gapdoc ) then
gapdoc := opt.gapdoc;
elif IsBool( opt.gapdoc ) and opt.gapdoc = true then
gapdoc := rec();
fi;
#
# Extract test settings
#
if IsBound( opt.maketest ) then
if IsRecord( opt.maketest ) then
maketest := opt.maketest;
elif opt.maketest = true then
maketest := rec( );
fi;
fi;
if IsBound( gapdoc ) then
if not IsBound( gapdoc.main ) then
gapdoc.main := pkg;
fi;
# FIXME: the following may break if a package uses more than one book
if IsBound( package_info.PackageDoc ) and IsBound( package_info.PackageDoc[1].BookName ) then
gapdoc.bookname := package_info.PackageDoc[1].BookName;
elif not is_worksheet then
# Default: book name = package name
gapdoc.bookname := pkg;
Print("\n");
Print("WARNING: PackageInfo.g is missing a PackageDoc entry!\n");
Print("Without this, your package manual will not be recognized by the GAP help system.\n");
Print("You can correct this by adding the following to your PackageInfo.g:\n");
Print("PackageDoc := rec(\n");
Print(" BookName := ~.PackageName,\n");
#Print(" BookName := \"", pkg, "\",\n");
Print(" ArchiveURLSubset := [\"doc\"],\n");
Print(" HTMLStart := \"doc/chap0.html\",\n");
Print(" PDFFile := \"doc/manual.pdf\",\n");
Print(" SixFile := \"doc/manual.six\",\n");
Print(" LongTitle := ~.Subtitle,\n");
Print("),\n");
Print("\n");
fi;
if not IsBound( gapdoc.files ) then
gapdoc.files := [];
fi;
if not IsBound( gapdoc.scan_dirs ) and not is_worksheet then
gapdoc.scan_dirs := [ "gap", "lib", "examples", "examples/doc" ];
fi;
if not is_worksheet then
Append( gapdoc.files, AUTODOC_FindMatchingFiles(pkg, gapdoc.scan_dirs, [ "g", "gi", "gd" ]) );
fi;
# Attempt to weed out duplicates as they may confuse GAPDoc (this
# won't work if there are any non-normalized paths in the list).
gapdoc.files := Set( gapdoc.files );
# Convert the file paths in gapdoc.files, which are relative to
# the package directory, to paths which are relative to the doc directory.
# For this, we assume that doc_dir_rel is normalized (e.g.
# it does not contains '//') and relative.
d := Number( Filename( doc_dir_rel, "" ), x -> x = '/' );
d := Concatenation( ListWithIdenticalEntries(d, "../") );
gapdoc.files := List( gapdoc.files, f -> Concatenation( d, f ) );
fi;
# read tree
# FIXME: shouldn't tree be declared inside of an 'if IsBound(autodoc)' section?
tree := DocumentationTree( );
if IsBound( autodoc ) then
if IsBound( autodoc.section_intros ) then
AUTODOC_PROCESS_INTRO_STRINGS( autodoc.section_intros : Tree := tree );
fi;
AutoDocScanFiles( autodoc.files : PackageName := pkg, Tree := tree );
fi;
if is_worksheet then
# FIXME: We use scaffold and autodoc here without checking whether
# they are bound. Does that mean worksheets always use them?
if IsRecord( scaffold.TitlePage ) and IsBound( scaffold.TitlePage.Title ) then
pkg := scaffold.TitlePage.Title;
elif IsBound( tree!.TitlePage.Title ) then
pkg := tree!.TitlePage.Title;
elif IsBound( autodoc.files ) and Length( autodoc.files ) > 0 then
pkg := autodoc.files[ 1 ];
while Position( pkg, '/' ) <> fail do
Remove( pkg, 1 );
od;
while Position( pkg, '.' ) <> fail do
Remove( pkg, Length( pkg ) );
od;
else
Error( "could not figure out a title." );
fi;
if not IsString( pkg ) then
pkg := JoinStringsWithSeparator( pkg, " " );
fi;
gapdoc.main := ReplacedString( pkg, " ", "_" );
gapdoc.bookname := ReplacedString( pkg, " ", "_" );
fi;
#
# Generate scaffold
#
gapdoc_latex_option_record := rec( );
if IsBound( scaffold ) then
## Syntax is [ "class", [ "options" ] ]
if IsBound( scaffold.document_class ) then
position_document_class := PositionSublist( GAPDoc2LaTeXProcs.Head, "documentclass" );
if IsString( scaffold.document_class ) then
scaffold.document_class := [ scaffold.document_class ];
fi;
if position_document_class = fail then
Error( "something is wrong with the LaTeX header" );
fi;
GAPDoc2LaTeXProcs.Head := Concatenation(
GAPDoc2LaTeXProcs.Head{[ 1 .. PositionSublist( GAPDoc2LaTeXProcs.Head, "{", position_document_class ) ]},
scaffold.document_class[ 1 ],
GAPDoc2LaTeXProcs.Head{[ PositionSublist( GAPDoc2LaTeXProcs.Head, "}", position_document_class ) .. Length( GAPDoc2LaTeXProcs.Head ) ]} );
if Length( scaffold.document_class ) = 2 then
GAPDoc2LaTeXProcs.Head := Concatenation(
GAPDoc2LaTeXProcs.Head{[ 1 .. PositionSublist( GAPDoc2LaTeXProcs.Head, "[", position_document_class ) ]},
scaffold.document_class[ 2 ],
GAPDoc2LaTeXProcs.Head{[ PositionSublist( GAPDoc2LaTeXProcs.Head, "]", position_document_class ) .. Length( GAPDoc2LaTeXProcs.Head ) ]} );
fi;
fi;
if IsBound( scaffold.latex_header_file ) then
GAPDoc2LaTeXProcs.Head := StringFile( scaffold.latex_header_file );
fi;
if IsBound( scaffold.gapdoc_latex_options ) then
if IsRecord( scaffold.gapdoc_latex_options ) then
for i in RecNames( scaffold.gapdoc_latex_options ) do
if not IsString( scaffold.gapdoc_latex_options.( i ) )
and IsList( scaffold.gapdoc_latex_options.( i ) )
and LowercaseString( scaffold.gapdoc_latex_options.( i )[ 1 ] ) = "file" then
scaffold.gapdoc_latex_options.( i ) := StringFile( scaffold.gapdoc_latex_options.( i )[ 2 ] );
fi;
od;
gapdoc_latex_option_record := scaffold.gapdoc_latex_options;
fi;
fi;
if not IsBound( scaffold.includes ) then
scaffold.includes := [ ];
fi;
if IsBound( autodoc ) then
# If scaffold.includes is already set, then we add
# AutoDocMainFile.xml to it, but *only* if it not already
# there. This way, package authors can control where
# it is put in their includes list.
if not "AutoDocMainFile.xml" in scaffold.includes then
Add( scaffold.includes, "AutoDocMainFile.xml" );
fi;
fi;
if IsBound( scaffold.bib ) and IsBool( scaffold.bib ) then
if scaffold.bib = true then
scaffold.bib := Concatenation( pkg, ".bib" );
else
Unbind( scaffold.bib );
fi;
elif not IsBound( scaffold.bib ) then
# If there is a doc/PKG.bib file, assume that we want to reference it in the scaffold.
if IsReadableFile( Filename( doc_dir, Concatenation( pkg, ".bib" ) ) ) then
scaffold.bib := Concatenation( pkg, ".bib" );
fi;
fi;
AUTODOC_WriteOnce( scaffold, "index", true );
if IsBound( gapdoc ) then
if AUTODOC_GetSuffix( gapdoc.main ) = "xml" then
scaffold.main_xml_file := gapdoc.main;
else
scaffold.main_xml_file := Concatenation( gapdoc.main, ".xml" );
fi;
fi;
# TODO: It should be possible to only rebuild the title page. (Perhaps also only the main page? but this is less important)
if IsBound( scaffold.TitlePage ) then
if IsRecord( scaffold.TitlePage ) then
title_page := scaffold.TitlePage;
else
title_page := rec( );
fi;
AUTODOC_WriteOnce( title_page, "dir", doc_dir );
AUTODOC_APPEND_RECORD_WRITEONCE( title_page, tree!.TitlePage );
if not is_worksheet then
AUTODOC_APPEND_RECORD_WRITEONCE( title_page, ExtractTitleInfoFromPackageInfo( pkg ) );
fi;
CreateTitlePage( title_page );
fi;
if IsBound( scaffold.MainPage ) and scaffold.MainPage <> false then
scaffold.dir := doc_dir;
scaffold.book_name := pkg;
CreateMainPage( scaffold );
fi;
fi;
#
# Run AutoDoc
#
if IsBound( autodoc ) then
WriteDocumentation( tree, doc_dir );
fi;
#
# Run GAPDoc
#
if IsBound( gapdoc ) then
# Ask GAPDoc to use UTF-8 as input encoding for LaTeX, as the XML files
# of the documentation are also in UTF-8 encoding, and may contain characters
# not contained in the default Latin 1 encoding.
SetGapDocLaTeXOptions( "utf8", gapdoc_latex_option_record );
MakeGAPDocDoc( doc_dir, gapdoc.main, gapdoc.files, gapdoc.bookname, "MathJax" );
CopyHTMLStyleFiles( Filename( doc_dir, "" ) );
# The following (undocumented) API is there for compatibility
# with old-style gapmacro.tex based package manuals. It
# produces a manual.lab file which those packages can use if
# they wish to link to things in the manual we are currently
# generating. This can probably be removed eventually, but for
# now, doing it does not hurt.
# FIXME: It seems that this command does not work if pdflatex
# is not present. Maybe we should remove it.
if not is_worksheet then
GAPDocManualLab( pkg );
fi;
fi;
if IsBound( maketest ) then
AUTODOC_WriteOnce( maketest, "filename", "maketest.g" );
AUTODOC_WriteOnce( maketest, "folder", pkg_dir );
AUTODOC_WriteOnce( maketest, "scan_dir", doc_dir );
AUTODOC_WriteOnce( maketest, "files_to_scan", gapdoc.files );
if IsString( maketest.folder ) then
maketest.folder := Directory( maketest.folder );
fi;
if IsString( maketest.scan_dir ) then
maketest.scan_dir := Directory( maketest.scan_dir );
fi;
AUTODOC_WriteOnce( maketest, "commands", [ ] );
AUTODOC_WriteOnce( maketest, "book_name", gapdoc.main );
CreateMakeTest( maketest );
fi;
return true;
end );

115
samples/GAP/PackageInfo.g Normal file
View File

@@ -0,0 +1,115 @@
#############################################################################
##
## PackageInfo.g for the package `cvec' Max Neunhoeffer
##
## (created from Frank Lübeck's PackageInfo.g template file)
##
SetPackageInfo( rec(
PackageName := "cvec",
Subtitle := "Compact vectors over finite fields",
Version := "2.5.1",
Date := "04/04/2014", # dd/mm/yyyy format
## Information about authors and maintainers.
Persons := [
rec(
LastName := "Neunhoeffer",
FirstNames := "Max",
IsAuthor := true,
IsMaintainer := false,
Email := "neunhoef@mcs.st-and.ac.uk",
WWWHome := "http://www-groups.mcs.st-and.ac.uk/~neunhoef/",
PostalAddress := Concatenation( [
"School of Mathematics and Statistics\n",
"University of St Andrews\n",
"Mathematical Institute\n",
"North Haugh\n",
"St Andrews, Fife KY16 9SS\n",
"Scotland, UK" ] ),
Place := "St Andrews",
Institution := "University of St Andrews"
),
],
## Status information. Currently the following cases are recognized:
## "accepted" for successfully refereed packages
## "deposited" for packages for which the GAP developers agreed
## to distribute them with the core GAP system
## "dev" for development versions of packages
## "other" for all other packages
##
# Status := "accepted",
Status := "deposited",
## You must provide the next two entries if and only if the status is
## "accepted" because is was successfully refereed:
# format: 'name (place)'
# CommunicatedBy := "Mike Atkinson (St. Andrews)",
#CommunicatedBy := "",
# format: mm/yyyy
# AcceptDate := "08/1999",
#AcceptDate := "",
PackageWWWHome := "http://neunhoef.github.io/cvec/",
README_URL := Concatenation(~.PackageWWWHome, "README"),
PackageInfoURL := Concatenation(~.PackageWWWHome, "PackageInfo.g"),
ArchiveURL := Concatenation("https://github.com/neunhoef/cvec/",
"releases/download/v", ~.Version,
"/cvec-", ~.Version),
ArchiveFormats := ".tar.gz .tar.bz2",
## Here you must provide a short abstract explaining the package content
## in HTML format (used on the package overview Web page) and an URL
## for a Webpage with more detailed information about the package
## (not more than a few lines, less is ok):
## Please, use '<span class="pkgname">GAP</span>' and
## '<span class="pkgname">MyPKG</span>' for specifing package names.
##
AbstractHTML :=
"This package provides an implementation of compact vectors over finite\
fields. Contrary to earlier implementations no table lookups are used\
but only word-based processor arithmetic. This allows for bigger finite\
fields and higher speed.",
PackageDoc := rec(
BookName := "cvec",
ArchiveURLSubset := ["doc"],
HTMLStart := "doc/chap0.html",
PDFFile := "doc/manual.pdf",
SixFile := "doc/manual.six",
LongTitle := "Compact vectors over finite fields",
),
Dependencies := rec(
GAP := ">=4.5.5",
NeededOtherPackages := [
["GAPDoc", ">= 1.2"],
["IO", ">= 4.1"],
["orb", ">= 4.2"],
],
SuggestedOtherPackages := [],
ExternalConditions := []
),
AvailabilityTest := function()
if not "cvec" in SHOW_STAT() and
Filename(DirectoriesPackagePrograms("cvec"), "cvec.so") = fail then
#Info(InfoWarning, 1, "cvec: kernel cvec functions not available.");
return fail;
fi;
return true;
end,
## *Optional*, but recommended: path relative to package root to a file which
## contains as many tests of the package functionality as sensible.
#TestFile := "tst/testall.g",
## *Optional*: Here you can list some keyword related to the topic
## of the package.
Keywords := []
));

23
samples/GAP/example.gd Normal file
View File

@@ -0,0 +1,23 @@
#############################################################################
##
#W example.gd
##
## This file contains a sample of a GAP declaration file.
##
DeclareProperty( "SomeProperty", IsLeftModule );
DeclareGlobalFunction( "SomeGlobalFunction" );
#############################################################################
##
#C IsQuuxFrobnicator(<R>)
##
## <ManSection>
## <Filt Name="IsQuuxFrobnicator" Arg='R' Type='Category'/>
##
## <Description>
## Tests whether R is a quux frobnicator.
## </Description>
## </ManSection>
##
DeclareSynonym( "IsQuuxFrobnicator", IsField and IsGroup );

64
samples/GAP/example.gi Normal file
View File

@@ -0,0 +1,64 @@
#############################################################################
##
#W example.gd
##
## This file contains a sample of a GAP implementation file.
##
#############################################################################
##
#M SomeOperation( <val> )
##
## performs some operation on <val>
##
InstallMethod( SomeProperty,
"for left modules",
[ IsLeftModule ], 0,
function( M )
if IsFreeLeftModule( M ) and not IsTrivial( M ) then
return true;
fi;
TryNextMethod();
end );
#############################################################################
##
#F SomeGlobalFunction( )
##
## A global variadic funfion.
##
InstallGlobalFunction( SomeGlobalFunction, function( arg )
if Length( arg ) = 3 then
return arg[1] + arg[2] * arg[3];
elif Length( arg ) = 2 then
return arg[1] - arg[2]
else
Error( "usage: SomeGlobalFunction( <x>, <y>[, <z>] )" );
fi;
end );
#
# A plain function.
#
SomeFunc := function(x, y)
local z, func, tmp, j;
z := x * 1.0;
y := 17^17 - y;
func := a -> a mod 5;
tmp := List( [1..50], func );
while y > 0 do
for j in tmp do
Print(j, "\n");
od;
repeat
y := y - 1;
until 0 < 1;
y := y -1;
od;
return z;
end;

822
samples/GAP/vspc.gd Normal file
View File

@@ -0,0 +1,822 @@
#############################################################################
##
#W vspc.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for vector spaces.
##
## The operations for bases of free left modules can be found in the file
## <F>lib/basis.gd<F>.
##
#############################################################################
##
#C IsLeftOperatorRing(<R>)
##
## <ManSection>
## <Filt Name="IsLeftOperatorRing" Arg='R' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareSynonym( "IsLeftOperatorRing",
IsLeftOperatorAdditiveGroup and IsRing and IsAssociativeLOpDProd );
#T really?
#############################################################################
##
#C IsLeftOperatorRingWithOne(<R>)
##
## <ManSection>
## <Filt Name="IsLeftOperatorRingWithOne" Arg='R' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareSynonym( "IsLeftOperatorRingWithOne",
IsLeftOperatorAdditiveGroup and IsRingWithOne
and IsAssociativeLOpDProd );
#T really?
#############################################################################
##
#C IsLeftVectorSpace( <V> )
#C IsVectorSpace( <V> )
##
## <#GAPDoc Label="IsLeftVectorSpace">
## <ManSection>
## <Filt Name="IsLeftVectorSpace" Arg='V' Type='Category'/>
## <Filt Name="IsVectorSpace" Arg='V' Type='Category'/>
##
## <Description>
## A <E>vector space</E> in &GAP; is a free left module
## (see&nbsp;<Ref Func="IsFreeLeftModule"/>) over a division ring
## (see Chapter&nbsp;<Ref Chap="Fields and Division Rings"/>).
## <P/>
## Whenever we talk about an <M>F</M>-vector space <A>V</A> then <A>V</A> is
## an additive group (see&nbsp;<Ref Func="IsAdditiveGroup"/>) on which the
## division ring <M>F</M> acts via multiplication from the left such that
## this action and the addition in <A>V</A> are left and right distributive.
## The division ring <M>F</M> can be accessed as value of the attribute
## <Ref Func="LeftActingDomain"/>.
## <P/>
## Vector spaces in &GAP; are always <E>left</E> vector spaces,
## <Ref Filt="IsLeftVectorSpace"/> and <Ref Filt="IsVectorSpace"/> are
## synonyms.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsLeftVectorSpace",
IsLeftModule and IsLeftActedOnByDivisionRing );
DeclareSynonym( "IsVectorSpace", IsLeftVectorSpace );
InstallTrueMethod( IsFreeLeftModule,
IsLeftModule and IsLeftActedOnByDivisionRing );
#############################################################################
##
#F IsGaussianSpace( <V> )
##
## <#GAPDoc Label="IsGaussianSpace">
## <ManSection>
## <Func Name="IsGaussianSpace" Arg='V'/>
##
## <Description>
## The filter <Ref Filt="IsGaussianSpace"/> (see&nbsp;<Ref Sect="Filters"/>)
## for the row space (see&nbsp;<Ref Func="IsRowSpace"/>)
## or matrix space (see&nbsp;<Ref Func="IsMatrixSpace"/>) <A>V</A>
## over the field <M>F</M>, say,
## indicates that the entries of all row vectors or matrices in <A>V</A>,
## respectively, are all contained in <M>F</M>.
## In this case, <A>V</A> is called a <E>Gaussian</E> vector space.
## Bases for Gaussian spaces can be computed using Gaussian elimination for
## a given list of vector space generators.
## <Example><![CDATA[
## gap> mats:= [ [[1,1],[2,2]], [[3,4],[0,1]] ];;
## gap> V:= VectorSpace( Rationals, mats );;
## gap> IsGaussianSpace( V );
## true
## gap> mats[1][1][1]:= E(4);; # an element in an extension field
## gap> V:= VectorSpace( Rationals, mats );;
## gap> IsGaussianSpace( V );
## false
## gap> V:= VectorSpace( Field( Rationals, [ E(4) ] ), mats );;
## gap> IsGaussianSpace( V );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "IsGaussianSpace", IsVectorSpace );
InstallTrueMethod( IsGaussianSpace,
IsVectorSpace and IsFullMatrixModule );
InstallTrueMethod( IsGaussianSpace,
IsVectorSpace and IsFullRowModule );
#############################################################################
##
#C IsDivisionRing( <D> )
##
## <#GAPDoc Label="IsDivisionRing">
## <ManSection>
## <Filt Name="IsDivisionRing" Arg='D' Type='Category'/>
##
## <Description>
## A <E>division ring</E> in &GAP; is a nontrivial associative algebra
## <A>D</A> with a multiplicative inverse for each nonzero element.
## In &GAP; every division ring is a vector space over a division ring
## (possibly over itself).
## Note that being a division ring is thus not a property that a ring can
## get, because a ring is usually not represented as a vector space.
## <P/>
## The field of coefficients is stored as the value of the attribute
## <Ref Func="LeftActingDomain"/> of <A>D</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsDivisionRing",
IsMagmaWithInversesIfNonzero
and IsLeftOperatorRingWithOne
and IsLeftVectorSpace
and IsNonTrivial
and IsAssociative
and IsEuclideanRing );
#############################################################################
##
#A GeneratorsOfLeftVectorSpace( <V> )
#A GeneratorsOfVectorSpace( <V> )
##
## <#GAPDoc Label="GeneratorsOfLeftVectorSpace">
## <ManSection>
## <Attr Name="GeneratorsOfLeftVectorSpace" Arg='V'/>
## <Attr Name="GeneratorsOfVectorSpace" Arg='V'/>
##
## <Description>
## For an <M>F</M>-vector space <A>V</A>,
## <Ref Attr="GeneratorsOfLeftVectorSpace"/> returns a list of vectors in
## <A>V</A> that generate <A>V</A> as an <M>F</M>-vector space.
## <Example><![CDATA[
## gap> GeneratorsOfVectorSpace( FullRowSpace( Rationals, 3 ) );
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfLeftVectorSpace",
GeneratorsOfLeftOperatorAdditiveGroup );
DeclareSynonymAttr( "GeneratorsOfVectorSpace",
GeneratorsOfLeftOperatorAdditiveGroup );
#############################################################################
##
#A CanonicalBasis( <V> )
##
## <#GAPDoc Label="CanonicalBasis">
## <ManSection>
## <Attr Name="CanonicalBasis" Arg='V'/>
##
## <Description>
## If the vector space <A>V</A> supports a <E>canonical basis</E> then
## <Ref Attr="CanonicalBasis"/> returns this basis,
## otherwise <K>fail</K> is returned.
## <P/>
## The defining property of a canonical basis is that its vectors are
## uniquely determined by the vector space.
## If canonical bases exist for two vector spaces over the same left acting
## domain (see&nbsp;<Ref Func="LeftActingDomain"/>) then the equality of
## these vector spaces can be decided by comparing the canonical bases.
## <P/>
## The exact meaning of a canonical basis depends on the type of <A>V</A>.
## Canonical bases are defined for example for Gaussian row and matrix
## spaces (see&nbsp;<Ref Sect="Row and Matrix Spaces"/>).
## <P/>
## If one designs a new kind of vector spaces
## (see&nbsp;<Ref Sect="How to Implement New Kinds of Vector Spaces"/>) and
## defines a canonical basis for these spaces then the
## <Ref Attr="CanonicalBasis"/> method one installs
## (see&nbsp;<Ref Func="InstallMethod"/>)
## must <E>not</E> call <Ref Func="Basis"/>.
## On the other hand, one probably should install a <Ref Func="Basis"/>
## method that simply calls <Ref Attr="CanonicalBasis"/>,
## the value of the method
## (see&nbsp;<Ref Sect="Method Installation"/> and
## <Ref Sect="Applicable Methods and Method Selection"/>)
## being <C>CANONICAL_BASIS_FLAGS</C>.
## <Example><![CDATA[
## gap> vecs:= [ [ 1, 2, 3 ], [ 1, 1, 1 ], [ 1, 1, 1 ] ];;
## gap> V:= VectorSpace( Rationals, vecs );;
## gap> B:= CanonicalBasis( V );
## CanonicalBasis( <vector space over Rationals, with 3 generators> )
## gap> BasisVectors( B );
## [ [ 1, 0, -1 ], [ 0, 1, 2 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CanonicalBasis", IsFreeLeftModule );
#############################################################################
##
#F IsRowSpace( <V> )
##
## <#GAPDoc Label="IsRowSpace">
## <ManSection>
## <Func Name="IsRowSpace" Arg='V'/>
##
## <Description>
## A <E>row space</E> in &GAP; is a vector space that consists of
## row vectors (see Chapter&nbsp;<Ref Chap="Row Vectors"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRowSpace", IsRowModule and IsVectorSpace );
#############################################################################
##
#F IsGaussianRowSpace( <V> )
##
## <ManSection>
## <Func Name="IsGaussianRowSpace" Arg='V'/>
##
## <Description>
## A row space is <E>Gaussian</E> if the left acting domain contains all
## scalars that occur in the vectors.
## Thus one can use Gaussian elimination in the calculations.
## <P/>
## (Otherwise the space is non-Gaussian.
## We will need a flag for this to write down methods that delegate from
## non-Gaussian spaces to Gaussian ones.)
## <!-- reformulate this when it becomes documented -->
## </Description>
## </ManSection>
##
DeclareSynonym( "IsGaussianRowSpace", IsGaussianSpace and IsRowSpace );
#############################################################################
##
#F IsNonGaussianRowSpace( <V> )
##
## <ManSection>
## <Func Name="IsNonGaussianRowSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Func="IsNonGaussianRowSpace"/> then this expresses that <A>V</A>
## consists of row vectors (see&nbsp;<Ref Func="IsRowVector"/>) such
## that not all entries in these row vectors are contained in <M>F</M>
## (so Gaussian elimination cannot be used to compute an <M>F</M>-basis
## from a list of vector space generators),
## and that <A>V</A> is handled via the mechanism of nice bases
## (see&nbsp;<Ref ???="..."/>) in the following way.
## Let <M>K</M> be the field spanned by the entries of all vectors in
## <A>V</A>.
## Then the <Ref Attr="NiceFreeLeftModuleInfo"/> value of <A>V</A> is
## a basis <M>B</M> of the field extension <M>K / ( K \cap F )</M>,
## and the <Ref Func="NiceVector"/> value of <M>v \in <A>V</A></M>
## is defined by replacing each entry of <M>v</M> by the list of its
## <M>B</M>-coefficients, and then forming the concatenation.
## <P/>
## So the associated nice vector space is a Gaussian row space
## (see&nbsp;<Ref Func="IsGaussianRowSpace"/>).
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsNonGaussianRowSpace",
"for non-Gaussian row spaces" );
#############################################################################
##
#F IsMatrixSpace( <V> )
##
## <#GAPDoc Label="IsMatrixSpace">
## <ManSection>
## <Func Name="IsMatrixSpace" Arg='V'/>
##
## <Description>
## A <E>matrix space</E> in &GAP; is a vector space that consists of matrices
## (see Chapter&nbsp;<Ref Chap="Matrices"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsMatrixSpace", IsMatrixModule and IsVectorSpace );
#############################################################################
##
#F IsGaussianMatrixSpace( <V> )
##
## <ManSection>
## <Func Name="IsGaussianMatrixSpace" Arg='V'/>
##
## <Description>
## A matrix space is Gaussian if the left acting domain contains all
## scalars that occur in the vectors.
## Thus one can use Gaussian elimination in the calculations.
## <P/>
## (Otherwise the space is non-Gaussian.
## We will need a flag for this to write down methods that delegate from
## non-Gaussian spaces to Gaussian ones.)
## </Description>
## </ManSection>
##
DeclareSynonym( "IsGaussianMatrixSpace", IsGaussianSpace and IsMatrixSpace );
#############################################################################
##
#F IsNonGaussianMatrixSpace( <V> )
##
## <ManSection>
## <Func Name="IsNonGaussianMatrixSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Func="IsNonGaussianMatrixSpace"/>
## then this expresses that <A>V</A> consists of matrices
## (see&nbsp;<Ref Func="IsMatrix"/>)
## such that not all entries in these matrices are contained in <M>F</M>
## (so Gaussian elimination cannot be used to compute an <M>F</M>-basis
## from a list of vector space generators),
## and that <A>V</A> is handled via the mechanism of nice bases
## (see&nbsp;<Ref ???="..."/>) in the following way.
## Let <M>K</M> be the field spanned by the entries of all vectors in <A>V</A>.
## The <Ref Attr="NiceFreeLeftModuleInfo"/> value of <A>V</A> is irrelevant,
## and the <Ref Func="NiceVector"/> value of <M>v \in <A>V</A></M>
## is defined as the concatenation of the rows of <M>v</M>.
## <P/>
## So the associated nice vector space is a (not necessarily Gaussian)
## row space (see&nbsp;<Ref Func="IsRowSpace"/>).
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsNonGaussianMatrixSpace",
"for non-Gaussian matrix spaces" );
#############################################################################
##
#A NormedRowVectors( <V> ) . . . normed vectors in a Gaussian row space <V>
##
## <#GAPDoc Label="NormedRowVectors">
## <ManSection>
## <Attr Name="NormedRowVectors" Arg='V'/>
##
## <Description>
## For a finite Gaussian row space <A>V</A>
## (see&nbsp;<Ref Func="IsRowSpace"/>, <Ref Func="IsGaussianSpace"/>),
## <Ref Attr="NormedRowVectors"/> returns a list of those nonzero
## vectors in <A>V</A> that have a one in the first nonzero component.
## <P/>
## The result list can be used as action domain for the action of a matrix
## group via <Ref Func="OnLines"/>, which yields the natural action on
## one-dimensional subspaces of <A>V</A>
## (see also&nbsp;<Ref Func="Subspaces"/>).
## <Example><![CDATA[
## gap> vecs:= NormedRowVectors( GF(3)^2 );
## [ [ 0*Z(3), Z(3)^0 ], [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3)^0 ],
## [ Z(3)^0, Z(3) ] ]
## gap> Action( GL(2,3), vecs, OnLines );
## Group([ (3,4), (1,2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NormedRowVectors", IsGaussianSpace );
#############################################################################
##
#A TrivialSubspace( <V> )
##
## <#GAPDoc Label="TrivialSubspace">
## <ManSection>
## <Attr Name="TrivialSubspace" Arg='V'/>
##
## <Description>
## For a vector space <A>V</A>, <Ref Attr="TrivialSubspace"/> returns the
## subspace of <A>V</A> that consists of the zero vector in <A>V</A>.
## <Example><![CDATA[
## gap> V:= GF(3)^3;;
## gap> triv:= TrivialSubspace( V );
## <vector space over GF(3), with 0 generators>
## gap> AsSet( triv );
## [ [ 0*Z(3), 0*Z(3), 0*Z(3) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "TrivialSubspace", TrivialSubmodule );
#############################################################################
##
#F VectorSpace( <F>, <gens>[, <zero>][, "basis"] )
##
## <#GAPDoc Label="VectorSpace">
## <ManSection>
## <Func Name="VectorSpace" Arg='F, gens[, zero][, "basis"]'/>
##
## <Description>
## For a field <A>F</A> and a collection <A>gens</A> of vectors,
## <Ref Func="VectorSpace"/> returns the <A>F</A>-vector space spanned by
## the elements in <A>gens</A>.
## <P/>
## The optional argument <A>zero</A> can be used to specify the zero element
## of the space; <A>zero</A> <E>must</E> be given if <A>gens</A> is empty.
## The optional string <C>"basis"</C> indicates that <A>gens</A> is known to
## be linearly independent over <A>F</A>, in particular the dimension of the
## vector space is immediately set;
## note that <Ref Func="Basis"/> need <E>not</E> return the basis formed by
## <A>gens</A> if the string <C>"basis"</C> is given as an argument.
## <!-- crossref. to <C>FreeLeftModule</C> as soon as the modules chapter
## is reliable!-->
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );
## <vector space over Rationals, with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "VectorSpace" );
#############################################################################
##
#F Subspace( <V>, <gens>[, "basis"] ) . subspace of <V> generated by <gens>
#F SubspaceNC( <V>, <gens>[, "basis"] )
##
## <#GAPDoc Label="Subspace">
## <ManSection>
## <Func Name="Subspace" Arg='V, gens[, "basis"]'/>
## <Func Name="SubspaceNC" Arg='V, gens[, "basis"]'/>
##
## <Description>
## For an <M>F</M>-vector space <A>V</A> and a list or collection
## <A>gens</A> that is a subset of <A>V</A>,
## <Ref Func="Subspace"/> returns the <M>F</M>-vector space spanned by
## <A>gens</A>; if <A>gens</A> is empty then the trivial subspace
## (see&nbsp;<Ref Func="TrivialSubspace"/>) of <A>V</A> is returned.
## The parent (see&nbsp;<Ref Sect="Parents"/>) of the returned vector space
## is set to <A>V</A>.
## <P/>
## <Ref Func="SubspaceNC"/> does the same as <Ref Func="Subspace"/>,
## except that it omits the check whether <A>gens</A> is a subset of
## <A>V</A>.
## <P/>
## The optional string <A>"basis"</A> indicates that <A>gens</A> is known to
## be linearly independent over <M>F</M>.
## In this case the dimension of the subspace is immediately set,
## and both <Ref Func="Subspace"/> and <Ref Func="SubspaceNC"/> do
## <E>not</E> check whether <A>gens</A> really is linearly independent and
## whether <A>gens</A> is a subset of <A>V</A>.
## <!-- crossref. to <C>Submodule</C> as soon as the modules chapter
## is reliable!-->
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );;
## gap> W:= Subspace( V, [ [ 0, 1, 2 ] ] );
## <vector space over Rationals, with 1 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "Subspace", Submodule );
DeclareSynonym( "SubspaceNC", SubmoduleNC );
#############################################################################
##
#O AsVectorSpace( <F>, <D> ) . . . . . . . . . view <D> as <F>-vector space
##
## <#GAPDoc Label="AsVectorSpace">
## <ManSection>
## <Oper Name="AsVectorSpace" Arg='F, D'/>
##
## <Description>
## Let <A>F</A> be a division ring and <A>D</A> a domain.
## If the elements in <A>D</A> form an <A>F</A>-vector space then
## <Ref Oper="AsVectorSpace"/> returns this <A>F</A>-vector space,
## otherwise <K>fail</K> is returned.
## <P/>
## <Ref Oper="AsVectorSpace"/> can be used for example to view a given
## vector space as a vector space over a smaller or larger division ring.
## <Example><![CDATA[
## gap> V:= FullRowSpace( GF( 27 ), 3 );
## ( GF(3^3)^3 )
## gap> Dimension( V ); LeftActingDomain( V );
## 3
## GF(3^3)
## gap> W:= AsVectorSpace( GF( 3 ), V );
## <vector space over GF(3), with 9 generators>
## gap> Dimension( W ); LeftActingDomain( W );
## 9
## GF(3)
## gap> AsVectorSpace( GF( 9 ), V );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "AsVectorSpace", AsLeftModule );
#############################################################################
##
#O AsSubspace( <V>, <U> ) . . . . . . . . . . . view <U> as subspace of <V>
##
## <#GAPDoc Label="AsSubspace">
## <ManSection>
## <Oper Name="AsSubspace" Arg='V, U'/>
##
## <Description>
## Let <A>V</A> be an <M>F</M>-vector space, and <A>U</A> a collection.
## If <A>U</A> is a subset of <A>V</A> such that the elements of <A>U</A>
## form an <M>F</M>-vector space then <Ref Oper="AsSubspace"/> returns this
## vector space, with parent set to <A>V</A>
## (see&nbsp;<Ref Func="AsVectorSpace"/>).
## Otherwise <K>fail</K> is returned.
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );;
## gap> W:= VectorSpace( Rationals, [ [ 1/2, 1/2, 1/2 ] ] );;
## gap> U:= AsSubspace( V, W );
## <vector space over Rationals, with 1 generators>
## gap> Parent( U ) = V;
## true
## gap> AsSubspace( V, [ [ 1, 1, 1 ] ] );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsSubspace", [ IsVectorSpace, IsCollection ] );
#############################################################################
##
#F Intersection2Spaces( <AsStruct>, <Substruct>, <Struct> )
##
## <ManSection>
## <Func Name="Intersection2Spaces" Arg='AsStruct, Substruct, Struct'/>
##
## <Description>
## is a function that takes two arguments <A>V</A> and <A>W</A> which must
## be finite dimensional vector spaces,
## and returns the intersection of <A>V</A> and <A>W</A>.
## <P/>
## If the left acting domains are different then let <M>F</M> be their
## intersection.
## The intersection of <A>V</A> and <A>W</A> is computed as intersection of
## <C><A>AsStruct</A>( <A>F</A>, <A>V</A> )</C> and
## <C><A>AsStruct</A>( <A>F</A>, <A>V</A> )</C>.
## <P/>
## If the left acting domains are equal to <M>F</M> then the intersection of
## <A>V</A> and <A>W</A> is returned either as <M>F</M>-<A>Substruct</A>
## with the common parent of <A>V</A> and <A>W</A> or as
## <M>F</M>-<A>Struct</A>, in both cases with known basis.
## <P/>
## This function is used to handle the intersections of two vector spaces,
## two algebras, two algebras-with-one, two left ideals, two right ideals,
## two two-sided ideals.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "Intersection2Spaces" );
#############################################################################
##
#F FullRowSpace( <F>, <n> )
##
## <#GAPDoc Label="FullRowSpace">
## <ManSection>
## <Func Name="FullRowSpace" Arg='F, n'/>
## <Meth Name="\^" Arg='F, n' Label="for a field and an integer"/>
##
## <Description>
## For a field <A>F</A> and a nonnegative integer <A>n</A>,
## <Ref Func="FullRowSpace"/> returns the <A>F</A>-vector space that
## consists of all row vectors (see&nbsp;<Ref Func="IsRowVector"/>) of
## length <A>n</A> with entries in <A>F</A>.
## <P/>
## An alternative to construct this vector space is via
## <A>F</A><C>^</C><A>n</A>.
## <Example><![CDATA[
## gap> FullRowSpace( GF( 9 ), 3 );
## ( GF(3^2)^3 )
## gap> GF(9)^3; # the same as above
## ( GF(3^2)^3 )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "FullRowSpace", FullRowModule );
DeclareSynonym( "RowSpace", FullRowModule );
#############################################################################
##
#F FullMatrixSpace( <F>, <m>, <n> )
##
## <#GAPDoc Label="FullMatrixSpace">
## <ManSection>
## <Func Name="FullMatrixSpace" Arg='F, m, n'/>
## <Meth Name="\^" Arg='F, dims'
## Label="for a field and a pair of integers"/>
##
## <Description>
## For a field <A>F</A> and two positive integers <A>m</A> and <A>n</A>,
## <Ref Func="FullMatrixSpace"/> returns the <A>F</A>-vector space that
## consists of all <A>m</A> by <A>n</A> matrices
## (see&nbsp;<Ref Func="IsMatrix"/>) with entries in <A>F</A>.
## <P/>
## If <A>m</A><C> = </C><A>n</A> then the result is in fact an algebra
## (see&nbsp;<Ref Func="FullMatrixAlgebra"/>).
## <P/>
## An alternative to construct this vector space is via
## <A>F</A><C>^[</C><A>m</A>,<A>n</A><C>]</C>.
## <Example><![CDATA[
## gap> FullMatrixSpace( GF(2), 4, 5 );
## ( GF(2)^[ 4, 5 ] )
## gap> GF(2)^[ 4, 5 ]; # the same as above
## ( GF(2)^[ 4, 5 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "FullMatrixSpace", FullMatrixModule );
DeclareSynonym( "MatrixSpace", FullMatrixModule );
DeclareSynonym( "MatSpace", FullMatrixModule );
#############################################################################
##
#C IsSubspacesVectorSpace( <D> )
##
## <#GAPDoc Label="IsSubspacesVectorSpace">
## <ManSection>
## <Filt Name="IsSubspacesVectorSpace" Arg='D' Type='Category'/>
##
## <Description>
## The domain of all subspaces of a (finite) vector space or of all
## subspaces of fixed dimension, as returned by <Ref Func="Subspaces"/>
## (see&nbsp;<Ref Func="Subspaces"/>) lies in the category
## <Ref Filt="IsSubspacesVectorSpace"/>.
## <Example><![CDATA[
## gap> D:= Subspaces( GF(3)^3 );
## Subspaces( ( GF(3)^3 ) )
## gap> Size( D );
## 28
## gap> iter:= Iterator( D );;
## gap> NextIterator( iter );
## <vector space over GF(3), with 0 generators>
## gap> NextIterator( iter );
## <vector space of dimension 1 over GF(3)>
## gap> IsSubspacesVectorSpace( D );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsSubspacesVectorSpace", IsDomain );
#############################################################################
##
#M IsFinite( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
## Returns `true' if <D> is finite.
## We allow subspaces domains in `IsSubspacesVectorSpace' only for finite
## vector spaces.
##
InstallTrueMethod( IsFinite, IsSubspacesVectorSpace );
#############################################################################
##
#A Subspaces( <V>[, <k>] )
##
## <#GAPDoc Label="Subspaces">
## <ManSection>
## <Attr Name="Subspaces" Arg='V[, k]'/>
##
## <Description>
## Called with a finite vector space <A>v</A>,
## <Ref Oper="Subspaces"/> returns the domain of all subspaces of <A>V</A>.
## <P/>
## Called with <A>V</A> and a nonnegative integer <A>k</A>,
## <Ref Oper="Subspaces"/> returns the domain of all <A>k</A>-dimensional
## subspaces of <A>V</A>.
## <P/>
## Special <Ref Attr="Size"/> and <Ref Oper="Iterator"/> methods are
## provided for these domains.
## <!-- <C>Enumerator</C> would also be good ...
## (special treatment for full row spaces,
## other spaces delegate to this)-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Subspaces", IsLeftModule );
DeclareOperation( "Subspaces", [ IsLeftModule, IsInt ] );
#############################################################################
##
#F IsSubspace( <V>, <U> )
##
## <ManSection>
## <Func Name="IsSubspace" Arg='V, U'/>
##
## <Description>
## check that <A>U</A> is a vector space that is contained in <A>V</A>
## <!-- Must also <A>V</A> be a vector space?
## If yes then must <A>V</A> and <A>U</A> have same left acting domain?
## (Is this function useful at all?) -->
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "IsSubspace" );
#############################################################################
##
#A OrthogonalSpaceInFullRowSpace( <U> )
##
## <ManSection>
## <Attr Name="OrthogonalSpaceInFullRowSpace" Arg='U'/>
##
## <Description>
## For a Gaussian row space <A>U</A> over <M>F</M>,
## <Ref Attr="OrthogonalSpaceInFullRowSpace"/>
## returns a complement of <A>U</A> in the full row space of same vector
## dimension as <A>U</A> over <M>F</M>.
## </Description>
## </ManSection>
##
DeclareAttribute( "OrthogonalSpaceInFullRowSpace", IsGaussianSpace );
#############################################################################
##
#P IsVectorSpaceHomomorphism( <map> )
##
## <ManSection>
## <Prop Name="IsVectorSpaceHomomorphism" Arg='map'/>
##
## <Description>
## A mapping <M>f</M> is a vector space homomorphism (or linear mapping)
## if the source and range are vector spaces
## (see&nbsp;<Ref Func="IsVectorSpace"/>)
## over the same division ring <M>D</M>
## (see&nbsp;<Ref Func="LeftActingDomain"/>),
## and if <M>f( a + b ) = f(a) + f(b)</M> and <M>f( s * a ) = s * f(a)</M>
## hold for all elements <M>a</M>, <M>b</M> in the source of <M>f</M> and
## <M>s \in D</M>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsVectorSpaceHomomorphism", IsGeneralMapping );
#############################################################################
##
#E

651
samples/GAP/vspc.gi Normal file
View File

@@ -0,0 +1,651 @@
#############################################################################
##
#W vspc.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for vector spaces.
##
#############################################################################
##
#M SetLeftActingDomain( <extL>, <D> )
##
## check whether the left acting domain <D> of the external left set <extL>
## knows that it is a division ring.
## This is used, e.g., to tell a free module over a division ring
## that it is a vector space.
##
InstallOtherMethod( SetLeftActingDomain,
"method to set also 'IsLeftActedOnByDivisionRing'",
[ IsAttributeStoringRep and IsLeftActedOnByRing, IsObject ],0,
function( extL, D )
if HasIsDivisionRing( D ) and IsDivisionRing( D ) then
SetIsLeftActedOnByDivisionRing( extL, true );
fi;
TryNextMethod();
end );
#############################################################################
##
#M IsLeftActedOnByDivisionRing( <M> )
##
InstallMethod( IsLeftActedOnByDivisionRing,
"method for external left set that is left acted on by a ring",
[ IsExtLSet and IsLeftActedOnByRing ],
function( M )
if IsIdenticalObj( M, LeftActingDomain( M ) ) then
TryNextMethod();
else
return IsDivisionRing( LeftActingDomain( M ) );
fi;
end );
#############################################################################
##
#F VectorSpace( <F>, <gens>[, <zero>][, "basis"] )
##
## The only difference between `VectorSpace' and `FreeLeftModule' shall be
## that the left acting domain of a vector space must be a division ring.
##
InstallGlobalFunction( VectorSpace, function( arg )
if Length( arg ) = 0 or not IsDivisionRing( arg[1] ) then
Error( "usage: VectorSpace( <F>, <gens>[, <zero>][, \"basis\"] )" );
fi;
return CallFuncList( FreeLeftModule, arg );
end );
#############################################################################
##
#M AsSubspace( <V>, <C> ) . . . . . . . for a vector space and a collection
##
InstallMethod( AsSubspace,
"for a vector space and a collection",
[ IsVectorSpace, IsCollection ],
function( V, C )
local newC;
if not IsSubset( V, C ) then
return fail;
fi;
newC:= AsVectorSpace( LeftActingDomain( V ), C );
if newC = fail then
return fail;
fi;
SetParent( newC, V );
UseIsomorphismRelation( C, newC );
UseSubsetRelation( C, newC );
return newC;
end );
#############################################################################
##
#M AsLeftModule( <F>, <V> ) . . . . . . for division ring and vector space
##
## View the vector space <V> as a vector space over the division ring <F>.
##
InstallMethod( AsLeftModule,
"method for a division ring and a vector space",
[ IsDivisionRing, IsVectorSpace ],
function( F, V )
local W, # the space, result
base, # basis vectors of field extension
gen, # loop over generators of 'V'
b, # loop over 'base'
gens, # generators of 'V'
newgens; # extended list of generators
if Characteristic( F ) <> Characteristic( LeftActingDomain( V ) ) then
# This is impossible.
return fail;
elif F = LeftActingDomain( V ) then
# No change of the left acting domain is necessary.
return V;
elif IsSubset( F, LeftActingDomain( V ) ) then
# Check whether 'V' is really a space over the bigger field,
# that is, whether the set of elements does not change.
base:= BasisVectors( Basis( AsField( LeftActingDomain( V ), F ) ) );
for gen in GeneratorsOfLeftModule( V ) do
for b in base do
if not b * gen in V then
# The field extension would change the set of elements.
return fail;
fi;
od;
od;
# Construct the space.
W:= LeftModuleByGenerators( F, GeneratorsOfLeftModule(V), Zero(V) );
elif IsSubset( LeftActingDomain( V ), F ) then
# View 'V' as a space over a smaller field.
# For that, the list of generators must be extended.
gens:= GeneratorsOfLeftModule( V );
if IsEmpty( gens ) then
W:= LeftModuleByGenerators( F, [], Zero( V ) );
else
base:= BasisVectors( Basis( AsField( F, LeftActingDomain( V ) ) ) );
newgens:= [];
for b in base do
for gen in gens do
Add( newgens, b * gen );
od;
od;
W:= LeftModuleByGenerators( F, newgens );
fi;
else
# View 'V' first as space over the intersection of fields,
# and then over the desired field.
return AsLeftModule( F,
AsLeftModule( Intersection( F,
LeftActingDomain( V ) ), V ) );
fi;
UseIsomorphismRelation( V, W );
UseSubsetRelation( V, W );
return W;
end );
#############################################################################
##
#M ViewObj( <V> ) . . . . . . . . . . . . . . . . . . . view a vector space
##
## print left acting domain, if known also dimension or no. of generators
##
InstallMethod( ViewObj,
"for vector space with known generators",
[ IsVectorSpace and HasGeneratorsOfLeftModule ],
function( V )
Print( "<vector space over ", LeftActingDomain( V ), ", with ",
Length( GeneratorsOfLeftModule( V ) ), " generators>" );
end );
InstallMethod( ViewObj,
"for vector space with known dimension",
[ IsVectorSpace and HasDimension ],
1, # override method for known generators
function( V )
Print( "<vector space of dimension ", Dimension( V ),
" over ", LeftActingDomain( V ), ">" );
end );
InstallMethod( ViewObj,
"for vector space",
[ IsVectorSpace ],
function( V )
Print( "<vector space over ", LeftActingDomain( V ), ">" );
end );
#############################################################################
##
#M PrintObj( <V> ) . . . . . . . . . . . . . . . . . . . for a vector space
##
InstallMethod( PrintObj,
"method for vector space with left module generators",
[ IsVectorSpace and HasGeneratorsOfLeftModule ],
function( V )
Print( "VectorSpace( ", LeftActingDomain( V ), ", ",
GeneratorsOfLeftModule( V ) );
if IsEmpty( GeneratorsOfLeftModule( V ) ) and HasZero( V ) then
Print( ", ", Zero( V ), " )" );
else
Print( " )" );
fi;
end );
InstallMethod( PrintObj,
"method for vector space",
[ IsVectorSpace ],
function( V )
Print( "VectorSpace( ", LeftActingDomain( V ), ", ... )" );
end );
#############################################################################
##
#M \/( <V>, <W> ) . . . . . . . . . factor of a vector space by a subspace
#M \/( <V>, <vectors> ) . . . . . . factor of a vector space by a subspace
##
InstallOtherMethod( \/,
"method for vector space and collection",
IsIdenticalObj,
[ IsVectorSpace, IsCollection ],
function( V, vectors )
if IsVectorSpace( vectors ) then
TryNextMethod();
else
return V / Subspace( V, vectors );
fi;
end );
InstallOtherMethod( \/,
"generic method for two vector spaces",
IsIdenticalObj,
[ IsVectorSpace, IsVectorSpace ],
function( V, W )
return ImagesSource( NaturalHomomorphismBySubspace( V, W ) );
end );
#############################################################################
##
#M Intersection2Spaces( <AsStruct>, <Substruct>, <Struct> )
##
InstallGlobalFunction( Intersection2Spaces,
function( AsStructure, Substructure, Structure )
return function( V, W )
local inters, # intersection, result
F, # coefficients field
gensV, # list of generators of 'V'
gensW, # list of generators of 'W'
VW, # sum of 'V' and 'W'
B; # basis of 'VW'
if LeftActingDomain( V ) <> LeftActingDomain( W ) then
# Compute the intersection as vector space over the intersection
# of the coefficients fields.
# (Note that the characteristic is the same.)
F:= Intersection2( LeftActingDomain( V ), LeftActingDomain( W ) );
return Intersection2( AsStructure( F, V ), AsStructure( F, W ) );
elif IsFiniteDimensional( V ) and IsFiniteDimensional( W ) then
# Compute the intersection of two spaces over the same field.
gensV:= GeneratorsOfLeftModule( V );
gensW:= GeneratorsOfLeftModule( W );
if IsEmpty( gensV ) then
if Zero( V ) in W then
inters:= V;
else
inters:= [];
fi;
elif IsEmpty( gensW ) then
if Zero( V ) in W then
inters:= W;
else
inters:= [];
fi;
else
# Compute a common coefficient space.
VW:= LeftModuleByGenerators( LeftActingDomain( V ),
Concatenation( gensV, gensW ) );
B:= Basis( VW );
# Construct the coefficient subspaces corresponding to 'V' and 'W'.
gensV:= List( gensV, x -> Coefficients( B, x ) );
gensW:= List( gensW, x -> Coefficients( B, x ) );
# Construct the intersection of row spaces, and carry back to VW.
inters:= List( SumIntersectionMat( gensV, gensW )[2],
x -> LinearCombination( B, x ) );
# Construct the intersection space, if possible with a parent.
if HasParent( V ) and HasParent( W )
and IsIdenticalObj( Parent( V ), Parent( W ) ) then
inters:= Substructure( Parent( V ), inters, "basis" );
elif IsEmpty( inters ) then
inters:= Substructure( V, inters, "basis" );
SetIsTrivial( inters, true );
else
inters:= Structure( LeftActingDomain( V ), inters, "basis" );
fi;
# Run implications by the subset relation.
UseSubsetRelation( V, inters );
UseSubsetRelation( W, inters );
fi;
# Return the result.
return inters;
else
TryNextMethod();
fi;
end;
end );
#############################################################################
##
#M Intersection2( <V>, <W> ) . . . . . . . . . . . . . for two vector spaces
##
InstallMethod( Intersection2,
"method for two vector spaces",
IsIdenticalObj,
[ IsVectorSpace, IsVectorSpace ],
Intersection2Spaces( AsLeftModule, SubspaceNC, VectorSpace ) );
#############################################################################
##
#M ClosureLeftModule( <V>, <a> ) . . . . . . . . . closure of a vector space
##
InstallMethod( ClosureLeftModule,
"method for a vector space with basis, and a vector",
IsCollsElms,
[ IsVectorSpace and HasBasis, IsVector ],
function( V, w )
local B; # basis of 'V'
# We can test membership easily.
B:= Basis( V );
#T why easily?
if Coefficients( B, w ) = fail then
# In the case of a vector space, we know a basis of the closure.
B:= Concatenation( BasisVectors( B ), [ w ] );
V:= LeftModuleByGenerators( LeftActingDomain( V ), B );
UseBasis( V, B );
fi;
return V;
end );
#############################################################################
##
## Methods for collections of subspaces of a vector space
##
#############################################################################
##
#R IsSubspacesVectorSpaceDefaultRep( <D> )
##
## is the representation of domains of subspaces of a vector space <V>,
## with the components 'structure' (with value <V>) and 'dimension'
## (with value either the dimension of the subspaces in the domain
## or the string '\"all\"', which means that the domain contains all
## subspaces of <V>).
##
DeclareRepresentation(
"IsSubspacesVectorSpaceDefaultRep",
IsComponentObjectRep,
[ "dimension", "structure" ] );
#T not IsAttributeStoringRep?
#############################################################################
##
#M PrintObj( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
InstallMethod( PrintObj,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
if IsInt( D!.dimension ) then
Print( "Subspaces( ", D!.structure, ", ", D!.dimension, " )" );
else
Print( "Subspaces( ", D!.structure, " )" );
fi;
end );
#############################################################################
##
#M Size( <D> ) . . . . . . . . . . . . . . . . . . . for a subspaces domain
##
## The number of $k$-dimensional subspaces in a $n$-dimensional space over
## the field with $q$ elements is
## $$
## a(n,k) = \prod_{i=0}^{k-1} \frac{q^n-q^i}{q^k-q^i} =
## \prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1}.
## $$
## We have the recursion
## $$
## a(n,k+1) = a(n,k) \frac{q^{n-i}-1}{q^{i+1}-1}.
## $$
##
## (The number of all subspaces is $\sum_{k=0}^n a(n,k)$.)
##
InstallMethod( Size,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local k,
n,
q,
size,
qn,
qd,
ank,
i;
if D!.dimension = "all" then
# all subspaces of the space
n:= Dimension( D!.structure );
q:= Size( LeftActingDomain( D!.structure ) );
size:= 1;
qn:= q^n;
qd:= q;
# $a(n,0)$
ank:= 1;
for k in [ 1 .. Int( (n-1)/2 ) ] do
# Compute $a(n,k)$.
ank:= ank * ( qn - 1 ) / ( qd - 1 );
qn:= qn / q;
qd:= qd * q;
size:= size + ank;
od;
size:= 2 * size;
if n mod 2 = 0 then
# Add the number of spaces of dimension $n/2$.
size:= size + ank * ( qn - 1 ) / ( qd - 1 );
fi;
else
# number of spaces of dimension 'k' only
n:= Dimension( D!.structure );
if D!.dimension < 0 or
n < D!.dimension then
return 0;
elif n / 2 < D!.dimension then
k:= n - D!.dimension;
else
k:= D!.dimension;
fi;
q:= Size( LeftActingDomain( D!.structure ) );
size:= 1;
qn:= q^n;
qd:= q;
for i in [ 1 .. k ] do
size:= size * ( qn - 1 ) / ( qd - 1 );
qn:= qn / q;
qd:= qd * q;
od;
fi;
# Return the result.
return size;
end );
#############################################################################
##
#M Enumerator( <D> ) . . . . . . . . . . . . . . . . for a subspaces domain
##
## Use the iterator to compute the elements list.
#T This is not allowed!
##
InstallMethod( Enumerator,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local iter, # iterator for 'D'
elms; # elements list, result
iter:= Iterator( D );
elms:= [];
while not IsDoneIterator( iter ) do
Add( elms, NextIterator( iter ) );
od;
return elms;
end );
#T necessary?
#############################################################################
##
#M Iterator( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
## uses the subspaces iterator for full row spaces and the mechanism of
## associated row spaces.
##
BindGlobal( "IsDoneIterator_Subspaces",
iter -> IsDoneIterator( iter!.associatedIterator ) );
BindGlobal( "NextIterator_Subspaces", function( iter )
local next;
next:= NextIterator( iter!.associatedIterator );
next:= List( GeneratorsOfLeftModule( next ),
x -> LinearCombination( iter!.basis, x ) );
return Subspace( iter!.structure, next, "basis" );
end );
BindGlobal( "ShallowCopy_Subspaces",
iter -> rec( structure := iter!.structure,
basis := iter!.basis,
associatedIterator := ShallowCopy(
iter!.associatedIterator ) ) );
InstallMethod( Iterator,
"for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local V; # the vector space
V:= D!.structure;
return IteratorByFunctions( rec(
IsDoneIterator := IsDoneIterator_Subspaces,
NextIterator := NextIterator_Subspaces,
ShallowCopy := ShallowCopy_Subspaces,
structure := V,
basis := Basis( V ),
associatedIterator := Iterator(
Subspaces( FullRowSpace( LeftActingDomain( V ),
Dimension( V ) ),
D!.dimension ) ) ) );
end );
#############################################################################
##
#M Subspaces( <V>, <dim> )
##
InstallMethod( Subspaces,
"for a vector space, and an integer",
[ IsVectorSpace, IsInt ],
function( V, dim )
if IsFinite( V ) then
return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
IsSubspacesVectorSpace
and IsSubspacesVectorSpaceDefaultRep ),
rec(
structure := V,
dimension := dim
)
);
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M Subspaces( <V> )
##
InstallMethod( Subspaces,
"for a vector space",
[ IsVectorSpace ],
function( V )
if IsFinite( V ) then
return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
IsSubspacesVectorSpace
and IsSubspacesVectorSpaceDefaultRep ),
rec(
structure := V,
dimension := "all"
)
);
else
TryNextMethod();
fi;
end );
#############################################################################
##
#F IsSubspace( <V>, <U> ) . . . . . . . . . . . . . . . . . check <U> <= <V>
##
InstallGlobalFunction( IsSubspace, function( V, U )
return IsVectorSpace( U ) and IsSubset( V, U );
end );
#############################################################################
##
#M IsVectorSpaceHomomorphism( <map> )
##
InstallMethod( IsVectorSpaceHomomorphism,
[ IsGeneralMapping ],
function( map )
local S, R, F;
S:= Source( map );
if not IsVectorSpace( S ) then
return false;
fi;
R:= Range( map );
if not IsVectorSpace( R ) then
return false;
fi;
F:= LeftActingDomain( S );
return ( F = LeftActingDomain( R ) ) and IsLinearMapping( F, map );
end );
#############################################################################
##
#E

View File

@@ -0,0 +1,15 @@
-- (c) 2009 Aarne Ranta under LGPL
abstract Foods = {
flags startcat = Comment ;
cat
Comment ; Item ; Kind ; Quality ;
fun
Pred : Item -> Quality -> Comment ;
This, That, These, Those : Kind -> Item ;
Mod : Quality -> Kind -> Kind ;
Wine, Cheese, Fish, Pizza : Kind ;
Very : Quality -> Quality ;
Fresh, Warm, Italian,
Expensive, Delicious, Boring : Quality ;
}

View File

@@ -0,0 +1,79 @@
-- (c) 2009 Laurette Pretorius Sr & Jr and Ansu Berg under LGPL
concrete FoodsAfr of Foods = open Prelude, Predef in{
flags coding=utf8;
lincat
Comment = {s: Str} ;
Kind = {s: Number => Str} ;
Item = {s: Str ; n: Number} ;
Quality = {s: AdjAP => Str} ;
lin
Pred item quality = {s = item.s ++ "is" ++ (quality.s ! Predic)};
This kind = {s = "hierdie" ++ (kind.s ! Sg); n = Sg};
That kind = {s = "daardie" ++ (kind.s ! Sg); n = Sg};
These kind = {s = "hierdie" ++ (kind.s ! Pl); n = Pl};
Those kind = {s = "daardie" ++ (kind.s ! Pl); n = Pl};
Mod quality kind = {s = table{n => (quality.s ! Attr) ++ (kind.s!n)}};
Wine = declNoun_e "wyn";
Cheese = declNoun_aa "kaas";
Fish = declNoun_ss "vis";
Pizza = declNoun_s "pizza";
Very quality = veryAdj quality;
Fresh = regAdj "vars";
Warm = regAdj "warm";
Italian = smartAdj_e "Italiaans";
Expensive = regAdj "duur";
Delicious = smartAdj_e "heerlik";
Boring = smartAdj_e "vervelig";
param
AdjAP = Attr | Predic ;
Number = Sg | Pl ;
oper
--Noun operations (wyn, kaas, vis, pizza)
declNoun_aa: Str -> {s: Number => Str} = \x ->
let v = tk 2 x
in
{s = table{Sg => x ; Pl => v + (last x) +"e"}};
declNoun_e: Str -> {s: Number => Str} = \x -> {s = table{Sg => x ; Pl => x + "e"}} ;
declNoun_s: Str -> {s: Number => Str} = \x -> {s = table{Sg => x ; Pl => x + "s"}} ;
declNoun_ss: Str -> {s: Number => Str} = \x -> {s = table{Sg => x ; Pl => x + (last x) + "e"}} ;
--Adjective operations
mkAdj : Str -> Str -> {s: AdjAP => Str} = \x,y -> {s = table{Attr => x; Predic => y}};
declAdj_e : Str -> {s : AdjAP=> Str} = \x -> mkAdj (x + "e") x;
declAdj_g : Str -> {s : AdjAP=> Str} = \w ->
let v = init w
in mkAdj (v + "ë") w ;
declAdj_oog : Str -> {s : AdjAP=> Str} = \w ->
let v = init w
in
let i = init v
in mkAdj (i + "ë") w ;
regAdj : Str -> {s : AdjAP=> Str} = \x -> mkAdj x x;
veryAdj : {s: AdjAP => Str} -> {s : AdjAP=> Str} = \x -> {s = table{a => "baie" ++ (x.s!a)}};
smartAdj_e : Str -> {s : AdjAP=> Str} = \a -> case a of
{
_ + "oog" => declAdj_oog a ;
_ + ("e" | "ie" | "o" | "oe") + "g" => declAdj_g a ;
_ => declAdj_e a
};
}

View File

@@ -0,0 +1,21 @@
concrete FoodsAmh of Foods ={
flags coding = utf8;
lincat
Comment,Item,Kind,Quality = Str;
lin
Pred item quality = item ++ quality++ "ነው::" ;
This kind = "ይህ" ++ kind;
That kind = "ያ" ++ kind;
Mod quality kind = quality ++ kind;
Wine = "ወይን";
Cheese = "አይብ";
Fish = "ዓሳ";
Very quality = "በጣም" ++ quality;
Fresh = "አዲስ";
Warm = "ትኩስ";
Italian = "የጥልያን";
Expensive = "ውድ";
Delicious = "ጣፋጭ";
Boring = "አስቀያሚ";
}

View File

@@ -0,0 +1,43 @@
-- (c) 2009 Krasimir Angelov under LGPL
concrete FoodsBul of Foods = {
flags
coding = utf8;
param
Gender = Masc | Fem | Neutr;
Number = Sg | Pl;
Agr = ASg Gender | APl ;
lincat
Comment = Str ;
Quality = {s : Agr => Str} ;
Item = {s : Str; a : Agr} ;
Kind = {s : Number => Str; g : Gender} ;
lin
Pred item qual = item.s ++ case item.a of {ASg _ => "е"; APl => "са"} ++ qual.s ! item.a ;
This kind = {s=case kind.g of {Masc=>"този"; Fem=>"тази"; Neutr=>"това" } ++ kind.s ! Sg; a=ASg kind.g} ;
That kind = {s=case kind.g of {Masc=>"онзи"; Fem=>"онази"; Neutr=>"онова"} ++ kind.s ! Sg; a=ASg kind.g} ;
These kind = {s="тези" ++ kind.s ! Pl; a=APl} ;
Those kind = {s="онези" ++ kind.s ! Pl; a=APl} ;
Mod qual kind = {s=\\n => qual.s ! (case n of {Sg => ASg kind.g; Pl => APl}) ++ kind.s ! n; g=kind.g} ;
Wine = {s = table {Sg => "вино"; Pl => "вина"}; g = Neutr};
Cheese = {s = table {Sg => "сирене"; Pl => "сирена"}; g = Neutr};
Fish = {s = table {Sg => "риба"; Pl => "риби"}; g = Fem};
Pizza = {s = table {Sg => "пица"; Pl => "пици"}; g = Fem};
Very qual = {s = \\g => "много" ++ qual.s ! g};
Fresh = {s = table {ASg Masc => "свеж"; ASg Fem => "свежа"; ASg Neutr => "свежо"; APl => "свежи"}};
Warm = {s = table {ASg Masc => "горещ"; ASg Fem => "гореща"; ASg Neutr => "горещо"; APl => "горещи"}};
Italian = {s = table {ASg Masc => "италиански"; ASg Fem => "италианска"; ASg Neutr => "италианско"; APl => "италиански"}};
Expensive = {s = table {ASg Masc => "скъп"; ASg Fem => "скъпа"; ASg Neutr => "скъпо"; APl => "скъпи"}};
Delicious = {s = table {ASg Masc => "превъзходен"; ASg Fem => "превъзходна"; ASg Neutr => "превъзходно"; APl => "превъзходни"}};
Boring = {s = table {ASg Masc => "еднообразен"; ASg Fem => "еднообразна"; ASg Neutr => "еднообразно"; APl => "еднообразни"}};
}

View File

@@ -0,0 +1,7 @@
--# -path=.:present
-- (c) 2009 Jordi Saludes under LGPL
concrete FoodsCat of Foods = FoodsI with
(Syntax = SyntaxCat),
(LexFoods = LexFoodsCat) ;

View File

@@ -0,0 +1,35 @@
concrete FoodsChi of Foods = {
flags coding = utf8 ;
lincat
Comment, Item = Str ;
Kind = {s,c : Str} ;
Quality = {s,p : Str} ;
lin
Pred item quality = item ++ "是" ++ quality.s ++ quality.p ;
This kind = "这" ++ kind.c ++ kind.s ;
That kind = "那" ++ kind.c ++ kind.s ;
These kind = "这" ++ "些" ++ kind.s ;
Those kind = "那" ++ "些" ++ kind.s ;
Mod quality kind = {
s = quality.s ++ quality.p ++ kind.s ;
c = kind.c
} ;
Wine = geKind "酒" ;
Pizza = geKind "比 萨 饼" ;
Cheese = geKind "奶 酪" ;
Fish = geKind "鱼" ;
Very quality = longQuality ("非 常" ++ quality.s) ;
Fresh = longQuality "新 鲜" ;
Warm = longQuality "温 热" ;
Italian = longQuality "意 大 利 式" ;
Expensive = longQuality "昂 贵" ;
Delicious = longQuality "美 味" ;
Boring = longQuality "难 吃" ;
oper
mkKind : Str -> Str -> {s,c : Str} = \s,c ->
{s = s ; c = c} ;
geKind : Str -> {s,c : Str} = \s ->
mkKind s "个" ;
longQuality : Str -> {s,p : Str} = \s ->
{s = s ; p = "的"} ;
}

View File

@@ -0,0 +1,35 @@
-- (c) 2011 Katerina Bohmova under LGPL
concrete FoodsCze of Foods = open ResCze in {
flags
coding = utf8 ;
lincat
Comment = {s : Str} ;
Quality = Adjective ;
Kind = Noun ;
Item = NounPhrase ;
lin
Pred item quality =
{s = item.s ++ copula ! item.n ++
quality.s ! item.g ! item.n} ;
This = det Sg "tento" "tato" "toto" ;
That = det Sg "tamten" "tamta" "tamto" ;
These = det Pl "tyto" "tyto" "tato" ;
Those = det Pl "tamty" "tamty" "tamta" ;
Mod quality kind = {
s = \\n => quality.s ! kind.g ! n ++ kind.s ! n ;
g = kind.g
} ;
Wine = noun "víno" "vína" Neutr ;
Cheese = noun "sýr" "sýry" Masc ;
Fish = noun "ryba" "ryby" Fem ;
Pizza = noun "pizza" "pizzy" Fem ;
Very qual = {s = \\g,n => "velmi" ++ qual.s ! g ! n} ;
Fresh = regAdj "čerstv" ;
Warm = regAdj "tepl" ;
Italian = regAdj "italsk" ;
Expensive = regAdj "drah" ;
Delicious = regnfAdj "vynikající" ;
Boring = regAdj "nudn" ;
}

View File

@@ -0,0 +1,58 @@
-- (c) 2009 Femke Johansson under LGPL
concrete FoodsDut of Foods = {
lincat
Comment = {s : Str};
Quality = {s : AForm => Str};
Kind = { s : Number => Str};
Item = {s : Str ; n : Number};
lin
Pred item quality =
{s = item.s ++ copula ! item.n ++ quality.s ! APred};
This = det Sg "deze";
These = det Pl "deze";
That = det Sg "die";
Those = det Pl "die";
Mod quality kind =
{s = \\n => quality.s ! AAttr ++ kind.s ! n};
Wine = regNoun "wijn";
Cheese = noun "kaas" "kazen";
Fish = noun "vis" "vissen";
Pizza = noun "pizza" "pizza's";
Very a = {s = \\f => "erg" ++ a.s ! f};
Fresh = regadj "vers";
Warm = regadj "warm";
Italian = regadj "Italiaans";
Expensive = adj "duur" "dure";
Delicious = regadj "lekker";
Boring = regadj "saai";
param
Number = Sg | Pl;
AForm = APred | AAttr;
oper
det : Number -> Str ->
{s : Number => Str} -> {s : Str ; n: Number} =
\n,det,noun -> {s = det ++ noun.s ! n ; n=n};
noun : Str -> Str -> {s : Number => Str} =
\man,men -> {s = table {Sg => man; Pl => men}};
regNoun : Str -> {s : Number => Str} =
\wijn -> noun wijn (wijn + "en");
regadj : Str -> {s : AForm => Str} =
\koud -> adj koud (koud+"e");
adj : Str -> Str -> {s : AForm => Str} =
\duur, dure -> {s = table {APred => duur; AAttr => dure}};
copula : Number => Str =
table {Sg => "is" ; Pl => "zijn"};
}

View File

@@ -0,0 +1,43 @@
-- (c) 2009 Aarne Ranta under LGPL
concrete FoodsEng of Foods = {
flags language = en_US;
lincat
Comment, Quality = {s : Str} ;
Kind = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;
lin
Pred item quality =
{s = item.s ++ copula ! item.n ++ quality.s} ;
This = det Sg "this" ;
That = det Sg "that" ;
These = det Pl "these" ;
Those = det Pl "those" ;
Mod quality kind =
{s = \\n => quality.s ++ kind.s ! n} ;
Wine = regNoun "wine" ;
Cheese = regNoun "cheese" ;
Fish = noun "fish" "fish" ;
Pizza = regNoun "pizza" ;
Very a = {s = "very" ++ a.s} ;
Fresh = adj "fresh" ;
Warm = adj "warm" ;
Italian = adj "Italian" ;
Expensive = adj "expensive" ;
Delicious = adj "delicious" ;
Boring = adj "boring" ;
param
Number = Sg | Pl ;
oper
det : Number -> Str ->
{s : Number => Str} -> {s : Str ; n : Number} =
\n,det,noun -> {s = det ++ noun.s ! n ; n = n} ;
noun : Str -> Str -> {s : Number => Str} =
\man,men -> {s = table {Sg => man ; Pl => men}} ;
regNoun : Str -> {s : Number => Str} =
\car -> noun car (car + "s") ;
adj : Str -> {s : Str} =
\cold -> {s = cold} ;
copula : Number => Str =
table {Sg => "is" ; Pl => "are"} ;
}

View File

@@ -0,0 +1,48 @@
-- (c) 2009 Julia Hammar under LGPL
concrete FoodsEpo of Foods = open Prelude in {
flags coding =utf8 ;
lincat
Comment = SS ;
Kind, Quality = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;
lin
Pred item quality = ss (item.s ++ copula ! item.n ++ quality.s ! item.n) ;
This = det Sg "ĉi tiu" ;
That = det Sg "tiu" ;
These = det Pl "ĉi tiuj" ;
Those = det Pl "tiuj" ;
Mod quality kind = {s = \\n => quality.s ! n ++ kind.s ! n} ;
Wine = regNoun "vino" ;
Cheese = regNoun "fromaĝo" ;
Fish = regNoun "fiŝo" ;
Pizza = regNoun "pico" ;
Very quality = {s = \\n => "tre" ++ quality.s ! n} ;
Fresh = regAdj "freŝa" ;
Warm = regAdj "varma" ;
Italian = regAdj "itala" ;
Expensive = regAdj "altekosta" ;
Delicious = regAdj "bongusta" ;
Boring = regAdj "enuiga" ;
param
Number = Sg | Pl ;
oper
det : Number -> Str -> {s : Number => Str} -> {s : Str ; n : Number} =
\n,d,cn -> {
s = d ++ cn.s ! n ;
n = n
} ;
regNoun : Str -> {s : Number => Str} =
\vino -> {s = table {Sg => vino ; Pl => vino + "j"}
} ;
regAdj : Str -> {s : Number => Str} =
\nova -> {s = table {Sg => nova ; Pl => nova + "j"}
} ;
copula : Number => Str = \\_ => "estas" ;
}

View File

@@ -0,0 +1,7 @@
--# -path=.:present
-- (c) 2009 Aarne Ranta under LGPL
concrete FoodsFin of Foods = FoodsI with
(Syntax = SyntaxFin),
(LexFoods = LexFoodsFin) ;

View File

@@ -0,0 +1,32 @@
--# -path=.:../foods:present
concrete FoodsFre of Foods = open SyntaxFre, ParadigmsFre in {
flags coding = utf8 ;
lincat
Comment = Utt ;
Item = NP ;
Kind = CN ;
Quality = AP ;
lin
Pred item quality = mkUtt (mkCl item quality) ;
This kind = mkNP this_QuantSg kind ;
That kind = mkNP that_QuantSg kind ;
These kind = mkNP these_QuantPl kind ;
Those kind = mkNP those_QuantPl kind ;
Mod quality kind = mkCN quality kind ;
Very quality = mkAP very_AdA quality ;
Wine = mkCN (mkN "vin" masculine) ;
Pizza = mkCN (mkN "pizza" feminine) ;
Cheese = mkCN (mkN "fromage" masculine) ;
Fish = mkCN (mkN "poisson" masculine) ;
Fresh = mkAP (mkA "frais" "fraîche" "frais" "fraîchement") ;
Warm = mkAP (mkA "chaud") ;
Italian = mkAP (mkA "italien") ;
Expensive = mkAP (mkA "cher") ;
Delicious = mkAP (mkA "délicieux") ;
Boring = mkAP (mkA "ennuyeux") ;
}

View File

@@ -0,0 +1,7 @@
--# -path=.:present
-- (c) 2009 Aarne Ranta under LGPL
concrete FoodsGer of Foods = FoodsI with
(Syntax = SyntaxGer),
(LexFoods = LexFoodsGer) ;

View File

@@ -0,0 +1,108 @@
--# -path=alltenses
--(c) 2009 Dana Dannells
-- Licensed under LGPL
concrete FoodsHeb of Foods = open Prelude in {
flags coding=utf8 ;
lincat
Comment = SS ;
Quality = {s: Number => Species => Gender => Str} ;
Kind = {s : Number => Species => Str ; g : Gender ; mod : Modified} ;
Item = {s : Str ; g : Gender ; n : Number ; sp : Species ; mod : Modified} ;
lin
Pred item quality = ss (item.s ++ quality.s ! item.n ! Indef ! item.g ) ;
This = det Sg Def "הזה" "הזאת";
That = det Sg Def "ההוא" "ההיא" ;
These = det Pl Def "האלה" "האלה" ;
Those = det Pl Def "ההם" "ההן" ;
Mod quality kind = {
s = \\n,sp => kind.s ! n ! sp ++ quality.s ! n ! sp ! kind.g;
g = kind.g ;
mod = T
} ;
Wine = regNoun "יין" "יינות" Masc ;
Cheese = regNoun "גבינה" "גבינות" Fem ;
Fish = regNoun "דג" "דגים" Masc ;
Pizza = regNoun "פיצה" "פיצות" Fem ;
Very qual = {s = \\g,n,sp => "מאוד" ++ qual.s ! g ! n ! sp} ;
Fresh = regAdj "טרי" ;
Warm = regAdj "חם" ;
Italian = regAdj2 "איטלקי" ;
Expensive = regAdj "יקר" ;
Delicious = regAdj "טעים" ;
Boring = regAdj2 "משעמם";
param
Number = Sg | Pl ;
Gender = Masc | Fem ;
Species = Def | Indef ;
Modified = T | F ;
oper
Noun : Type = {s : Number => Species => Str ; g : Gender ; mod : Modified } ;
Adj : Type = {s : Number => Species => Gender => Str} ;
det : Number -> Species -> Str -> Str -> Noun ->
{s : Str ; g :Gender ; n : Number ; sp : Species ; mod : Modified} =
\n,sp,m,f,cn -> {
s = case cn.mod of { _ => cn.s ! n ! sp ++ case cn.g of {Masc => m ; Fem => f} };
g = cn.g ;
n = n ;
sp = sp ;
mod = cn.mod
} ;
noun : (gvina,hagvina,gvinot,hagvinot : Str) -> Gender -> Noun =
\gvina,hagvina,gvinot,hagvinot,g -> {
s = table {
Sg => table {
Indef => gvina ;
Def => hagvina
} ;
Pl => table {
Indef => gvinot ;
Def => hagvinot
}
} ;
g = g ;
mod = F
} ;
regNoun : Str -> Str -> Gender -> Noun =
\gvina,gvinot, g ->
noun gvina (defH gvina) gvinot (defH gvinot) g ;
defH : Str -> Str = \cn ->
case cn of {_ => "ה" + cn};
replaceLastLetter : Str -> Str = \c ->
case c of {"ף" => "פ" ; "ם" => "מ" ; "ן" => "נ" ; "ץ" => "צ" ; "ך" => "כ"; _ => c} ;
adjective : (_,_,_,_ : Str) -> Adj =
\tov,tova,tovim,tovot -> {
s = table {
Sg => table {
Indef => table { Masc => tov ; Fem => tova } ;
Def => table { Masc => defH tov ; Fem => defH tova }
} ;
Pl => table {
Indef => table {Masc => tovim ; Fem => tovot } ;
Def => table { Masc => defH tovim ; Fem => defH tovot }
}
}
} ;
regAdj : Str -> Adj = \tov ->
case tov of { to + c@? =>
adjective tov (to + replaceLastLetter (c) + "ה" ) (to + replaceLastLetter (c) +"ים" ) (to + replaceLastLetter (c) + "ות" )};
regAdj2 : Str -> Adj = \italki ->
case italki of { italk+ c@? =>
adjective italki (italk + replaceLastLetter (c) +"ת" ) (italk + replaceLastLetter (c)+ "ים" ) (italk + replaceLastLetter (c) + "ות" )};
} -- FoodsHeb

View File

@@ -0,0 +1,75 @@
-- (c) 2010 Vikash Rauniyar under LGPL
concrete FoodsHin of Foods = {
flags coding=utf8 ;
param
Gender = Masc | Fem ;
Number = Sg | Pl ;
lincat
Comment = {s : Str} ;
Item = {s : Str ; g : Gender ; n : Number} ;
Kind = {s : Number => Str ; g : Gender} ;
Quality = {s : Gender => Number => Str} ;
lin
Pred item quality = {
s = item.s ++ quality.s ! item.g ! item.n ++ copula item.n
} ;
This kind = {s = "यह" ++ kind.s ! Sg ; g = kind.g ; n = Sg} ;
That kind = {s = "वह" ++ kind.s ! Sg ; g = kind.g ; n = Sg} ;
These kind = {s = "ये" ++ kind.s ! Pl ; g = kind.g ; n = Pl} ;
Those kind = {s = "वे" ++ kind.s ! Pl ; g = kind.g ; n = Pl} ;
Mod quality kind = {
s = \\n => quality.s ! kind.g ! n ++ kind.s ! n ;
g = kind.g
} ;
Wine = regN "मदिरा" ;
Cheese = regN "पनीर" ;
Fish = regN "मछली" ;
Pizza = regN "पिज़्ज़ा" ;
Very quality = {s = \\g,n => "अति" ++ quality.s ! g ! n} ;
Fresh = regAdj "ताज़ा" ;
Warm = regAdj "गरम" ;
Italian = regAdj "इटली" ;
Expensive = regAdj "बहुमूल्य" ;
Delicious = regAdj "स्वादिष्ट" ;
Boring = regAdj "अरुचिकर" ;
oper
mkN : Str -> Str -> Gender -> {s : Number => Str ; g : Gender} =
\s,p,g -> {
s = table {
Sg => s ;
Pl => p
} ;
g = g
} ;
regN : Str -> {s : Number => Str ; g : Gender} = \s -> case s of {
lark + "ा" => mkN s (lark + "े") Masc ;
lark + "ी" => mkN s (lark + "ीयँा") Fem ;
_ => mkN s s Masc
} ;
mkAdj : Str -> Str -> Str -> {s : Gender => Number => Str} = \ms,mp,f -> {
s = table {
Masc => table {
Sg => ms ;
Pl => mp
} ;
Fem => \\_ => f
}
} ;
regAdj : Str -> {s : Gender => Number => Str} = \a -> case a of {
acch + "ा" => mkAdj a (acch + "े") (acch + "ी") ;
_ => mkAdj a a a
} ;
copula : Number -> Str = \n -> case n of {
Sg => "है" ;
Pl => "हैं"
} ;
}

View File

@@ -0,0 +1,29 @@
-- (c) 2009 Aarne Ranta under LGPL
incomplete concrete FoodsI of Foods =
open Syntax, LexFoods in {
lincat
Comment = Utt ;
Item = NP ;
Kind = CN ;
Quality = AP ;
lin
Pred item quality = mkUtt (mkCl item quality) ;
This kind = mkNP this_Det kind ;
That kind = mkNP that_Det kind ;
These kind = mkNP these_Det kind ;
Those kind = mkNP those_Det kind ;
Mod quality kind = mkCN quality kind ;
Very quality = mkAP very_AdA quality ;
Wine = mkCN wine_N ;
Pizza = mkCN pizza_N ;
Cheese = mkCN cheese_N ;
Fish = mkCN fish_N ;
Fresh = mkAP fresh_A ;
Warm = mkAP warm_A ;
Italian = mkAP italian_A ;
Expensive = mkAP expensive_A ;
Delicious = mkAP delicious_A ;
Boring = mkAP boring_A ;
}

View File

@@ -0,0 +1,84 @@
--# -path=.:prelude
-- (c) 2009 Martha Dis Brandt under LGPL
concrete FoodsIce of Foods = open Prelude in {
flags coding=utf8;
lincat
Comment = SS ;
Quality = {s : Gender => Number => Defin => Str} ;
Kind = {s : Number => Str ; g : Gender} ;
Item = {s : Str ; g : Gender ; n : Number} ;
lin
Pred item quality = ss (item.s ++ copula item.n ++ quality.s ! item.g ! item.n ! Ind) ;
This, That = det Sg "þessi" "þessi" "þetta" ;
These, Those = det Pl "þessir" "þessar" "þessi" ;
Mod quality kind = { s = \\n => quality.s ! kind.g ! n ! Def ++ kind.s ! n ; g = kind.g } ;
Wine = noun "vín" "vín" Neutr ;
Cheese = noun "ostur" "ostar" Masc ;
Fish = noun "fiskur" "fiskar" Masc ;
-- the word "pizza" is more commonly used in Iceland, but "flatbaka" is the Icelandic word for it
Pizza = noun "flatbaka" "flatbökur" Fem ;
Very qual = {s = \\g,n,defOrInd => "mjög" ++ qual.s ! g ! n ! defOrInd } ;
Fresh = regAdj "ferskur" ;
Warm = regAdj "heitur" ;
Boring = regAdj "leiðinlegur" ;
-- the order of the given adj forms is: mSg fSg nSg mPl fPl nPl mSgDef f/nSgDef _PlDef
Italian = adjective "ítalskur" "ítölsk" "ítalskt" "ítalskir" "ítalskar" "ítölsk" "ítalski" "ítalska" "ítalsku" ;
Expensive = adjective "dýr" "dýr" "dýrt" "dýrir" "dýrar" "dýr" "dýri" "dýra" "dýru" ;
Delicious = adjective "ljúffengur" "ljúffeng" "ljúffengt" "ljúffengir" "ljúffengar" "ljúffeng" "ljúffengi" "ljúffenga" "ljúffengu" ;
param
Number = Sg | Pl ;
Gender = Masc | Fem | Neutr ;
Defin = Ind | Def ;
oper
det : Number -> Str -> Str -> Str -> {s : Number => Str ; g : Gender} ->
{s : Str ; g : Gender ; n : Number} =
\n,masc,fem,neutr,cn -> {
s = case cn.g of {Masc => masc ; Fem => fem; Neutr => neutr } ++ cn.s ! n ;
g = cn.g ;
n = n
} ;
noun : Str -> Str -> Gender -> {s : Number => Str ; g : Gender} =
\man,men,g -> {
s = table {
Sg => man ;
Pl => men
} ;
g = g
} ;
adjective : (x1,_,_,_,_,_,_,_,x9 : Str) -> {s : Gender => Number => Defin => Str} =
\ferskur,fersk,ferskt,ferskir,ferskar,fersk_pl,ferski,ferska,fersku -> {
s = \\g,n,t => case <g,n,t> of {
< Masc, Sg, Ind > => ferskur ;
< Masc, Pl, Ind > => ferskir ;
< Fem, Sg, Ind > => fersk ;
< Fem, Pl, Ind > => ferskar ;
< Neutr, Sg, Ind > => ferskt ;
< Neutr, Pl, Ind > => fersk_pl;
< Masc, Sg, Def > => ferski ;
< Fem, Sg, Def > | < Neutr, Sg, Def > => ferska ;
< _ , Pl, Def > => fersku
}
} ;
regAdj : Str -> {s : Gender => Number => Defin => Str} = \ferskur ->
let fersk = Predef.tk 2 ferskur
in adjective
ferskur fersk (fersk + "t")
(fersk + "ir") (fersk + "ar") fersk
(fersk + "i") (fersk + "a") (fersk + "u") ;
copula : Number -> Str =
\n -> case n of {
Sg => "er" ;
Pl => "eru"
} ;
}

View File

@@ -0,0 +1,8 @@
--# -path=.:present
-- (c) 2009 Aarne Ranta under LGPL
concrete FoodsIta of Foods = FoodsI with
(Syntax = SyntaxIta),
(LexFoods = LexFoodsIta) ;

View File

@@ -0,0 +1,72 @@
--# -path=.:../lib/src/prelude
-- (c) 2009 Zofia Stankiewicz under LGPL
concrete FoodsJpn of Foods = open Prelude in {
flags coding=utf8 ;
lincat
Comment = {s: Style => Str};
Quality = {s: AdjUse => Str ; t: AdjType} ;
Kind = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;
lin
Pred item quality = {s = case quality.t of {
IAdj => table {Plain => item.s ++ quality.s ! APred ; Polite => item.s ++ quality.s ! APred ++ copula ! Polite ! item.n } ;
NaAdj => \\p => item.s ++ quality.s ! APred ++ copula ! p ! item.n }
} ;
This = det Sg "この" ;
That = det Sg "その" ;
These = det Pl "この" ;
Those = det Pl "その" ;
Mod quality kind = {s = \\n => quality.s ! Attr ++ kind.s ! n} ;
Wine = regNoun "ワインは" ;
Cheese = regNoun "チーズは" ;
Fish = regNoun "魚は" ;
Pizza = regNoun "ピザは" ;
Very quality = {s = \\a => "とても" ++ quality.s ! a ; t = quality.t } ;
Fresh = adj "新鮮な" "新鮮";
Warm = regAdj "あたたかい" ;
Italian = adj "イタリアの" "イタリアのもの";
Expensive = regAdj "たかい" ;
Delicious = regAdj "おいしい" ;
Boring = regAdj "つまらない" ;
param
Number = Sg | Pl ;
AdjUse = Attr | APred ; -- na-adjectives have different forms as noun attributes and predicates
Style = Plain | Polite ; -- for phrase types
AdjType = IAdj | NaAdj ; -- IAdj can form predicates without the copula, NaAdj cannot
oper
det : Number -> Str -> {s : Number => Str} -> {s : Str ; n : Number} =
\n,d,cn -> {
s = d ++ cn.s ! n ;
n = n
} ;
noun : Str -> Str -> {s : Number => Str} =
\sakana,sakana -> {s = \\_ => sakana } ;
regNoun : Str -> {s : Number => Str} =
\sakana -> noun sakana sakana ;
adj : Str -> Str -> {s : AdjUse => Str ; t : AdjType} =
\chosenna, chosen -> {
s = table {
Attr => chosenna ;
APred => chosen
} ;
t = NaAdj
} ;
regAdj : Str -> {s: AdjUse => Str ; t : AdjType} =\akai -> {
s = \\_ => akai ; t = IAdj} ;
copula : Style => Number => Str =
table {
Plain => \\_ => "だ" ;
Polite => \\_ => "です" } ;
}

View File

@@ -0,0 +1,91 @@
--# -path=.:prelude
-- (c) 2009 Inese Bernsone under LGPL
concrete FoodsLav of Foods = open Prelude in {
flags
coding=utf8 ;
lincat
Comment = SS ;
Quality = {s : Q => Gender => Number => Defin => Str } ;
Kind = {s : Number => Str ; g : Gender} ;
Item = {s : Str ; g : Gender ; n : Number } ;
lin
Pred item quality = ss (item.s ++ {- copula item.n -} "ir" ++ quality.s ! Q1 ! item.g ! item.n ! Ind ) ;
This = det Sg "šis" "šī" ;
That = det Sg "tas" "tā" ;
These = det Pl "šie" "šīs" ;
Those = det Pl "tie" "tās" ;
Mod quality kind = {s = \\n => quality.s ! Q1 ! kind.g ! n ! Def ++ kind.s ! n ; g = kind.g } ;
Wine = noun "vīns" "vīni" Masc ;
Cheese = noun "siers" "sieri" Masc ;
Fish = noun "zivs" "zivis" Fem ;
Pizza = noun "pica" "picas" Fem ;
Very qual = {s = \\q,g,n,spec => "ļoti" ++ qual.s ! Q2 ! g ! n ! spec };
Fresh = adjective "svaigs" "svaiga" "svaigi" "svaigas" "svaigais" "svaigā" "svaigie" "svaigās" ;
Warm = regAdj "silts" ;
Italian = specAdj "itāļu" (regAdj "itālisks") ;
Expensive = regAdj "dārgs" ;
Delicious = regAdj "garšīgs" ;
Boring = regAdj "garlaicīgs" ;
param
Number = Sg | Pl ;
Gender = Masc | Fem ;
Defin = Ind | Def ;
Q = Q1 | Q2 ;
oper
det : Number -> Str -> Str -> {s : Number => Str ; g : Gender} ->
{s : Str ; g : Gender ; n : Number} =
\n,m,f,cn -> {
s = case cn.g of {Masc => m ; Fem => f} ++ cn.s ! n ;
g = cn.g ;
n = n
} ;
noun : Str -> Str -> Gender -> {s : Number => Str ; g : Gender} =
\man,men,g -> {
s = table {
Sg => man ;
Pl => men
} ;
g = g
} ;
adjective : (_,_,_,_,_,_,_,_ : Str) -> {s : Q => Gender => Number => Defin => Str} =
\skaists,skaista,skaisti,skaistas,skaistais,skaistaa,skaistie,skaistaas -> {
s = table {
_ => table {
Masc => table {
Sg => table {Ind => skaists ; Def => skaistais} ;
Pl => table {Ind => skaisti ; Def => skaistie}
} ;
Fem => table {
Sg => table {Ind => skaista ; Def => skaistaa} ;
Pl => table {Ind => skaistas ; Def => skaistaas}
}
}
}
} ;
{- irregAdj : Str -> {s : Gender => Number => Defin => Str} = \itaalju ->
let itaalju = itaalju
in adjective itaalju (itaalju) (itaalju) (itaalju) (itaalju) (itaalju) (itaalju) (itaalju) ; -}
regAdj : Str -> {s : Q => Gender => Number => Defin => Str} = \skaists ->
let skaist = init skaists
in adjective skaists (skaist + "a") (skaist + "i") (skaist + "as") (skaist + "ais") (skaist + "ā") (skaist + "ie") (skaist + "ās");
Adjective : Type = {s : Q => Gender => Number => Defin => Str} ;
specAdj : Str -> Adjective -> Adjective = \s,a -> {
s = table {
Q2 => a.s ! Q1 ;
Q1 => \\_,_,_ => s
}
} ;
}

View File

@@ -0,0 +1,105 @@
-- (c) 2013 John J. Camilleri under LGPL
concrete FoodsMlt of Foods = open Prelude in {
flags coding=utf8 ;
lincat
Comment = SS ;
Quality = {s : Gender => Number => Str} ;
Kind = {s : Number => Str ; g : Gender} ;
Item = {s : Str ; g : Gender ; n : Number} ;
lin
-- Pred item quality = ss (item.s ++ copula item.n item.g ++ quality.s ! item.g ! item.n) ;
Pred item quality = ss (item.s ++ quality.s ! item.g ! item.n) ;
This kind = det Sg "dan" "din" kind ;
That kind = det Sg "dak" "dik" kind ;
These kind = det Pl "dawn" "" kind ;
Those kind = det Pl "dawk" "" kind ;
Mod quality kind = {
s = \\n => kind.s ! n ++ quality.s ! kind.g ! n ;
g = kind.g
} ;
Wine = noun "inbid" "inbejjed" Masc ;
Cheese = noun "ġobon" "ġobniet" Masc ;
Fish = noun "ħuta" "ħut" Fem ;
Pizza = noun "pizza" "pizzez" Fem ;
Very qual = {s = \\g,n => qual.s ! g ! n ++ "ħafna"} ;
Warm = adjective "sħun" "sħuna" "sħan" ;
Expensive = adjective "għali" "għalja" "għaljin" ;
Delicious = adjective "tajjeb" "tajba" "tajbin" ;
Boring = uniAdj "tad-dwejjaq" ;
Fresh = regAdj "frisk" ;
Italian = regAdj "Taljan" ;
param
Number = Sg | Pl ;
Gender = Masc | Fem ;
oper
--Create an adjective (full function)
--Params: Sing Masc, Sing Fem, Plural
adjective : (_,_,_ : Str) -> {s : Gender => Number => Str} = \iswed,sewda,suwed -> {
s = table {
Masc => table {
Sg => iswed ;
Pl => suwed
} ;
Fem => table {
Sg => sewda ;
Pl => suwed
}
}
} ;
--Create a regular adjective
--Param: Sing Masc
regAdj : Str -> {s : Gender => Number => Str} = \frisk ->
adjective frisk (frisk + "a") (frisk + "i") ;
--Create a "uni-adjective" eg tal-buzz
--Param: Sing Masc
uniAdj : Str -> {s : Gender => Number => Str} = \uni ->
adjective uni uni uni ;
--Create a noun
--Params: Singular, Plural, Gender (inherent)
noun : Str -> Str -> Gender -> {s : Number => Str ; g : Gender} = \ktieb,kotba,g -> {
s = table {
Sg => ktieb ;
Pl => kotba
} ;
g = g
} ;
--Copula is a linking verb
--Params: Number, Gender
-- copula : Number -> Gender -> Str = \n,g -> case n of {
-- Sg => case g of { Masc => "huwa" ; Fem => "hija" } ;
-- Pl => "huma"
-- } ;
--Create an article, taking into account first letter of next word
article = pre {
"a"|"e"|"i"|"o"|"u" => "l-" ;
--cons@("ċ"|"d"|"n"|"r"|"s"|"t"|"x"|"ż") => "i" + cons + "-" ;
_ => "il-"
} ;
--Create a determinant
--Params: Sg/Pl, Masc, Fem
det : Number -> Str -> Str -> {s : Number => Str ; g : Gender} -> {s : Str ; g : Gender ; n : Number} = \n,m,f,cn -> {
s = case n of {
Sg => case cn.g of {Masc => m ; Fem => f}; --string
Pl => m --default to masc
} ++ article ++ cn.s ! n ;
g = cn.g ; --gender
n = n --number
} ;
}

View File

@@ -0,0 +1,49 @@
--# -path=.:/GF/lib/src/prelude
-- (c) 2009 Nyamsuren Erdenebadrakh under LGPL
concrete FoodsMon of Foods = open Prelude in {
flags coding=utf8;
lincat
Comment, Quality = SS ;
Kind = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;
lin
Pred item quality = ss (item.s ++ "бол" ++ quality.s) ;
This = det Sg "энэ" ;
That = det Sg "тэр" ;
These = det Pl "эдгээр" ;
Those = det Pl "тэдгээр" ;
Mod quality kind = {s = \\n => quality.s ++ kind.s ! n} ;
Wine = regNoun "дарс" ;
Cheese = regNoun "бяслаг" ;
Fish = regNoun "загас" ;
Pizza = regNoun "пицца" ;
Very = prefixSS "маш" ;
Fresh = ss "шинэ" ;
Warm = ss "халуун" ;
Italian = ss "итали" ;
Expensive = ss "үнэтэй" ;
Delicious = ss "амттай" ;
Boring = ss "амтгүй" ;
param
Number = Sg | Pl ;
oper
det : Number -> Str -> {s : Number => Str} -> {s : Str ; n : Number} =
\n,d,cn -> {
s = d ++ cn.s ! n ;
n = n
} ;
regNoun : Str -> {s : Number => Str} =
\x -> {s = table {
Sg => x ;
Pl => x + "нууд"}
} ;
}

View File

@@ -0,0 +1,60 @@
-- (c) 2011 Dinesh Simkhada under LGPL
concrete FoodsNep of Foods = {
flags coding = utf8 ;
lincat
Comment, Quality = {s : Str} ;
Kind = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;
lin
Pred item quality =
{s = item.s ++ quality.s ++ copula ! item.n} ;
This = det Sg "यो" ;
That = det Sg "त्यो" ;
These = det Pl "यी" ;
Those = det Pl "ती" ;
Mod quality kind =
{s = \\n => quality.s ++ kind.s ! n} ;
Wine = regNoun "रक्सी" ;
Cheese = regNoun "चिज" ;
Fish = regNoun "माछा" ;
Pizza = regNoun "पिज्जा" ;
Very a = {s = "धेरै" ++ a.s} ;
Fresh = adj "ताजा" ;
Warm = adj "तातो" ;
Italian = adj "इटालियन" ;
Expensive = adj "महँगो" | adj "बहुमूल्य" ;
Delicious = adj "स्वादिष्ट" | adj "मीठो" ;
Boring = adjPl "नमिठो" ;
param
Number = Sg | Pl ;
oper
det : Number -> Str ->
{s : Number => Str} -> {s : Str ; n : Number} =
\n,det,noun -> {s = det ++ noun.s ! n ; n = n} ;
noun : Str -> Str -> {s : Number => Str} =
\man,men -> {s = table {Sg => man ; Pl => men}} ;
regNoun : Str -> {s : Number => Str} =
\car -> noun car (car + "हरु") ;
adjPl : Str -> {s : Str} = \a -> case a of {
bor + "ठो" => adj (bor + "ठा") ;
_ => adj a
} ;
adj : Str -> {s : Str} =
\cold -> {s = cold} ;
copula : Number => Str =
table {Sg => "छ" ; Pl => "छन्"} ;
}

View File

@@ -0,0 +1,30 @@
concrete FoodsOri of Foods = {
flags coding = utf8 ;
lincat
Comment = Str;
Item = Str;
Kind = Str;
Quality = Str;
lin
Pred item quality = item ++ quality ++ "ଅଟେ";
This kind = "ଏଇ" ++ kind;
That kind = "ସେଇ" ++ kind;
These kind = "ଏଇ" ++ kind ++ "ଗୁଡିକ" ;
Those kind = "ସେଇ" ++ kind ++ "ଗୁଡିକ" ;
Mod quality kind = quality ++ kind;
Wine = "ମଦ";
Cheese = "ଛେନା";
Fish = "ମାଛ";
Pizza = "ପିଜଜ଼ା" ;
Very quality = "ଅତି" ++ quality;
Fresh = "ତାଜା";
Warm = "ଗରମ";
Italian = "ଇଟାଲି";
Expensive = "ମୁଲ୍ୟବାନ୍";
Delicious = "ସ୍ଵାଦିସ୍ଟ ";
Boring = "ଅରୁଚିକର";
}

View File

@@ -0,0 +1,65 @@
concrete FoodsPes of Foods = {
flags optimize=noexpand ; coding=utf8 ;
lincat
Comment = {s : Str} ;
Quality = {s : Add => Str; prep : Str} ;
Kind = {s : Add => Number => Str ; prep : Str};
Item = {s : Str ; n : Number};
lin
Pred item quality = {s = item.s ++ quality.s ! Indep ++ copula ! item.n} ;
This = det Sg "این" ;
That = det Sg "آن" ;
These = det Pl "این" ;
Those = det Pl "آن" ;
Mod quality kind = {s = \\a,n => kind.s ! Attr ! n ++ kind.prep ++ quality.s ! a ;
prep = quality.prep
};
Wine = regN "شراب" ;
Cheese = regN "پنیر" ;
Fish = regN "ماهى" ;
Pizza = regN "پیتزا" ;
Very a = {s = \\at => "خیلی" ++ a.s ! at ; prep = a.prep} ;
Fresh = adj "تازه" ;
Warm = adj "گرم" ;
Italian = adj "ایتالیایی" ;
Expensive = adj "گران" ;
Delicious = adj "لذىذ" ;
Boring = adj "ملال آور" ; -- it must be written as ملال آور.
param
Number = Sg | Pl ;
Add = Indep | Attr ;
oper
det : Number -> Str -> {s: Add => Number => Str ; prep : Str} -> {s : Str ; n: Number} =
\n,det,noun -> {s = det ++ noun.s ! Indep ! n ; n = n };
noun : (x1,_,_,x4 : Str) -> {s : Add => Number => Str ; prep : Str} = \pytzA, pytzAy, pytzAhA,pr ->
{s = \\a,n => case <a,n> of
{<Indep,Sg> => pytzA ; <Indep,Pl> => pytzAhA ;
<Attr,Sg> =>pytzA ; <Attr,Pl> => pytzAhA + "ى" };
prep = pr
};
regN : Str -> {s: Add => Number => Str ; prep : Str} = \mrd ->
case mrd of
{ _ + ("ا"|"ه"|"ى"|"و"|"") => noun mrd (mrd+"ى") (mrd + "ها") "";
_ => noun mrd mrd (mrd + "ها") "e"
};
adj : Str -> {s : Add => Str; prep : Str} = \tAzh ->
case tAzh of
{ _ + ("ا"|"ه"|"ى"|"و"|"") => mkAdj tAzh (tAzh ++ "ى") "" ;
_ => mkAdj tAzh tAzh "ه"
};
mkAdj : Str -> Str -> Str -> {s : Add => Str; prep : Str} = \tAzh, tAzhy, pr ->
{s = table {Indep => tAzh;
Attr => tAzhy};
prep = pr
};
copula : Number => Str = table {Sg => "است"; Pl => "هستند"};
}

View File

@@ -0,0 +1,79 @@
-- (c) 2009 Rami Shashati under LGPL
concrete FoodsPor of Foods = open Prelude in {
flags coding=utf8;
lincat
Comment = {s : Str} ;
Quality = {s : Gender => Number => Str} ;
Kind = {s : Number => Str ; g : Gender} ;
Item = {s : Str ; n : Number ; g : Gender } ;
lin
Pred item quality =
{s = item.s ++ copula ! item.n ++ quality.s ! item.g ! item.n } ;
This = det Sg (table {Masc => "este" ; Fem => "esta"}) ;
That = det Sg (table {Masc => "esse" ; Fem => "essa"}) ;
These = det Pl (table {Masc => "estes" ; Fem => "estas"}) ;
Those = det Pl (table {Masc => "esses" ; Fem => "essas"}) ;
Mod quality kind = { s = \\n => kind.s ! n ++ quality.s ! kind.g ! n ; g = kind.g } ;
Wine = regNoun "vinho" Masc ;
Cheese = regNoun "queijo" Masc ;
Fish = regNoun "peixe" Masc ;
Pizza = regNoun "pizza" Fem ;
Very a = { s = \\g,n => "muito" ++ a.s ! g ! n } ;
Fresh = mkAdjReg "fresco" ;
Warm = mkAdjReg "quente" ;
Italian = mkAdjReg "Italiano" ;
Expensive = mkAdjReg "caro" ;
Delicious = mkAdjReg "delicioso" ;
Boring = mkAdjReg "chato" ;
param
Number = Sg | Pl ;
Gender = Masc | Fem ;
oper
QualityT : Type = {s : Gender => Number => Str} ;
mkAdj : (_,_,_,_ : Str) -> QualityT = \bonito,bonita,bonitos,bonitas -> {
s = table {
Masc => table { Sg => bonito ; Pl => bonitos } ;
Fem => table { Sg => bonita ; Pl => bonitas }
} ;
} ;
-- regular pattern
adjSozinho : Str -> QualityT = \sozinho ->
let sozinh = Predef.tk 1 sozinho
in mkAdj sozinho (sozinh + "a") (sozinh + "os") (sozinh + "as") ;
-- for gender-independent adjectives
adjUtil : Str -> Str -> QualityT = \util,uteis ->
mkAdj util util uteis uteis ;
-- smart paradigm for adjcetives
mkAdjReg : Str -> QualityT = \a -> case last a of {
"o" => adjSozinho a ;
"e" => adjUtil a (a + "s")
} ;
ItemT : Type = {s : Str ; n : Number ; g : Gender } ;
det : Number -> (Gender => Str) -> KindT -> ItemT =
\num,det,noun -> {s = det ! noun.g ++ noun.s ! num ; n = num ; g = noun.g } ;
KindT : Type = {s : Number => Str ; g : Gender} ;
noun : Str -> Str -> Gender -> KindT =
\animal,animais,gen -> {s = table {Sg => animal ; Pl => animais} ; g = gen } ;
regNoun : Str -> Gender -> KindT =
\carro,gen -> noun carro (carro + "s") gen ;
copula : Number => Str = table {Sg => "é" ; Pl => "são"} ;
}

View File

@@ -0,0 +1,72 @@
-- (c) 2009 Ramona Enache under LGPL
concrete FoodsRon of Foods =
{
flags coding=utf8 ;
param Number = Sg | Pl ;
Gender = Masc | Fem ;
NGender = NMasc | NFem | NNeut ;
lincat
Comment = {s : Str};
Quality = {s : Number => Gender => Str};
Kind = {s : Number => Str; g : NGender};
Item = {s : Str ; n : Number; g : Gender};
lin
This = det Sg (mkTab "acest" "această");
That = det Sg (mkTab "acel" "acea");
These = det Pl (mkTab "acești" "aceste");
Those = det Pl (mkTab "acei" "acele");
Wine = mkNoun "vin" "vinuri" NNeut ;
Cheese = mkNoun "brânză" "brânzeturi" NFem ;
Fish = mkNoun "peşte" "peşti" NMasc ;
Pizza = mkNoun "pizza" "pizze" NFem;
Very a = {s = \\n,g => "foarte" ++ a.s ! n ! g};
Fresh = mkAdj "proaspăt" "proaspătă" "proaspeţi" "proaspete" ;
Warm = mkAdj "cald" "caldă" "calzi" "calde" ;
Italian = mkAdj "italian" "italiană" "italieni" "italiene" ;
Expensive = mkAdj "scump" "scumpă" "scumpi" "scumpe" ;
Delicious = mkAdj "delicios" "delcioasă" "delicioşi" "delicioase" ;
Boring = mkAdj "plictisitor" "plictisitoare" "plictisitori" "plictisitoare" ;
Pred item quality = {s = item.s ++ copula ! item.n ++ quality.s ! item.n ! item.g} ;
Mod quality kind = {s = \\n => kind.s ! n ++ quality.s ! n ! (getAgrGender kind.g n) ; g = kind.g};
oper
mkTab : Str -> Str -> {s : Gender => Str} = \acesta, aceasta ->
{s = table{Masc => acesta;
Fem => aceasta}};
det : Number -> {s : Gender => Str} -> {s : Number => Str ; g : NGender} -> {s : Str; n : Number; g : Gender} =
\n,det,noun -> let gg = getAgrGender noun.g n
in
{s = det.s ! gg ++ noun.s ! n ; n = n ; g = gg};
mkNoun : Str -> Str -> NGender -> {s : Number => Str; g : NGender} = \peste, pesti,g ->
{s = table {Sg => peste;
Pl => pesti};
g = g
};
oper mkAdj : (x1,_,_,x4 : Str) -> {s : Number => Gender => Str} = \scump, scumpa, scumpi, scumpe ->
{s = \\n,g => case <n,g> of
{<Sg,Masc> => scump ; <Sg,Fem> => scumpa;
<Pl,Masc> => scumpi ; <Pl,Fem> => scumpe
}};
copula : Number => Str = table {Sg => "este" ; Pl => "sunt"};
getAgrGender : NGender -> Number -> Gender = \ng,n ->
case <ng,n> of
{<NMasc,_> => Masc ; <NFem,_> => Fem;
<NNeut,Sg> => Masc ; <NNeut,Pl> => Fem
};
}

View File

@@ -0,0 +1,31 @@
--# -path=.:present
concrete FoodsSpa of Foods = open SyntaxSpa, StructuralSpa, ParadigmsSpa in {
lincat
Comment = Utt ;
Item = NP ;
Kind = CN ;
Quality = AP ;
lin
Pred item quality = mkUtt (mkCl item quality) ;
This kind = mkNP this_QuantSg kind ;
That kind = mkNP that_QuantSg kind ;
These kind = mkNP these_QuantPl kind ;
Those kind = mkNP those_QuantPl kind ;
Mod quality kind = mkCN quality kind ;
Very quality = mkAP very_AdA quality ;
Wine = mkCN (mkN "vino") ;
Pizza = mkCN (mkN "pizza") ;
Cheese = mkCN (mkN "queso") ;
Fish = mkCN (mkN "pescado") ;
Fresh = mkAP (mkA "fresco") ;
Warm = mkAP (mkA "caliente") ;
Italian = mkAP (mkA "italiano") ;
Expensive = mkAP (mkA "caro") ;
Delicious = mkAP (mkA "delicioso") ;
Boring = mkAP (mkA "aburrido") ;
}

View File

@@ -0,0 +1,7 @@
--# -path=.:present
-- (c) 2009 Aarne Ranta under LGPL
concrete FoodsSwe of Foods = FoodsI with
(Syntax = SyntaxSwe),
(LexFoods = LexFoodsSwe) ** {flags language = sv_SE;} ;

View File

@@ -0,0 +1,33 @@
--# -path=.:alltenses
concrete FoodsTha of Foods = open SyntaxTha, LexiconTha,
ParadigmsTha, (R=ResTha) in {
flags coding = utf8 ;
lincat
Comment = Utt ;
Item = NP ;
Kind = CN ;
Quality = AP ;
lin
Pred item quality = mkUtt (mkCl item quality) ;
This kind = mkNP this_Det kind ;
That kind = mkNP that_Det kind ;
These kind = mkNP these_Det kind ;
Those kind = mkNP those_Det kind ;
Mod quality kind = mkCN quality kind ;
Very quality = mkAP very_AdA quality ;
Wine = mkCN (mkN (R.thword "เหล้าอ" "งุ่น") "ขวด") ;
Pizza = mkCN (mkN (R.thword "พิซ" "ซา") "ถาด") ;
Cheese = mkCN (mkN (R.thword "เนย" "แข็ง") "ก้อน") ;
Fish = mkCN fish_N ;
Fresh = mkAP (mkA "สด") ;
Warm = mkAP warm_A ;
Italian = mkAP (mkA " อิตาลี") ;
Expensive = mkAP (mkA "แพง") ;
Delicious = mkAP (mkA "อร่อย") ;
Boring = mkAP (mkA (R.thword "น่า" "เบิ่อ")) ;
}

View File

@@ -0,0 +1,178 @@
--# -path=alltenses
-- (c) 2009 Laurette Pretorius Sr & Jr and Ansu Berg under LGPL
concrete FoodsTsn of Foods = open Prelude, Predef in {
flags coding = utf8;
lincat
Comment = {s:Str};
Item = {s:Str; c:NounClass; n:Number};
Kind = {w: Number => Str; r: Str; c: NounClass; q: Number => Str; b: Bool};
Quality = {s: NounClass => Number => Str; p_form: Str; t: TType};
lin
Pred item quality = {s = item.s ++ ((mkPredDescrCop quality.t) ! item.c ! item.n) ++ quality.p_form};
This kind = {s = (kind.w ! Sg) ++ (mkDemPron1 ! kind.c ! Sg) ++ (kind.q ! Sg); c = kind.c; n = Sg};
That kind = {s = (kind.w ! Sg) ++ (mkDemPron2 ! kind.c ! Sg) ++ (kind.q ! Sg); c = kind.c; n = Sg};
These kind = {s = (kind.w ! Pl) ++ (mkDemPron1 ! kind.c ! Pl) ++ (kind.q ! Pl); c = kind.c; n = Pl};
Those kind = {s = (kind.w ! Pl) ++ (mkDemPron2 ! kind.c ! Pl) ++ (kind.q ! Pl); c = kind.c; n = Pl};
Mod quality kind = mkMod quality kind;
-- Lexicon
Wine = mkNounNC14_6 "jalwa";
Cheese = mkNounNC9_10 "kase";
Fish = mkNounNC9_10 "thlapi";
Pizza = mkNounNC9_10 "pizza";
Very quality = smartVery quality;
Fresh = mkVarAdj "ntsha";
Warm = mkOrdAdj "bothitho";
Italian = mkPerAdj "Itali";
Expensive = mkVerbRel "tura";
Delicious = mkOrdAdj "monate";
Boring = mkOrdAdj "bosula";
param
NounClass = NC9_10 | NC14_6;
Number = Sg | Pl;
TType = P | V | ModV | R ;
oper
mkMod : {s: NounClass => Number => Str; p_form: Str; t: TType} -> {w: Number => Str; r: Str; c: NounClass; q: Number => Str; b: Bool} -> {w: Number => Str; r: Str; c: NounClass; q: Number => Str;
b: Bool} = \x,y -> case y.b of
{
True => {w = y.w; r = y.r; c = y.c;
q = table {
Sg => ((y.q ! Sg) ++ "le" ++ ((smartQualRelPart (x.t)) ! y.c ! Sg) ++ ((smartDescrCop (x.t)) ! y.c ! Sg) ++ (x.s ! y.c ! Sg));
Pl => ((y.q ! Pl) ++ "le" ++ ((smartQualRelPart (x.t))! y.c ! Pl) ++ ((smartDescrCop (x.t)) ! y.c ! Pl) ++(x.s ! y.c ! Pl))
}; b = True
};
False => {w = y.w; r = y.r; c = y.c;
q = table {
Sg => ((y.q ! Sg) ++ ((smartQualRelPart (x.t)) ! y.c ! Sg) ++ ((smartDescrCop (x.t)) ! y.c ! Sg) ++ (x.s ! y.c ! Sg));
Pl => ((y.q ! Pl) ++ ((smartQualRelPart (x.t)) ! y.c ! Pl) ++ ((smartDescrCop (x.t)) ! y.c ! Pl) ++(x.s ! y.c ! Pl))
}; b = True
}
};
mkNounNC14_6 : Str -> {w: Number => Str; r: Str; c: NounClass; q: Number => Str; b: Bool} = \x -> {w = table {Sg => "bo" + x; Pl => "ma" + x}; r = x; c = NC14_6;
q = table {Sg => ""; Pl => ""}; b = False};
mkNounNC9_10 : Str -> {w: Number => Str; r: Str; c: NounClass; q: Number => Str; b: Bool} = \x -> {w = table {Sg => "" + x; Pl => "di" + x}; r = x; c = NC9_10;
q = table {Sg => ""; Pl => ""}; b = False};
mkVarAdj : Str -> {s: NounClass => Number => Str; p_form: Str; t: TType} = \x ->
{
s = table {
NC9_10 => table {Sg => "" + x; Pl => "di" + x};
NC14_6 => table {Sg => "bo" + x; Pl => "ma" + x}
};
p_form = x;
t = R;
};
mkOrdAdj : Str -> {s: NounClass => Number => Str; p_form: Str; t: TType} = \x ->
{
s = table {
NC9_10 => table {Sg => "" + x; Pl => "" + x};
NC14_6 => table {Sg => "" + x; Pl => "" + x}
};
p_form = x;
t = R;
};
mkVerbRel : Str -> {s: NounClass => Number => Str; p_form: Str; t: TType} = \x ->
{
s = table {
NC9_10 => table {Sg => x + "ng"; Pl => x + "ng"};
NC14_6 => table {Sg => x + "ng"; Pl => x + "ng"}
};
p_form = x;
t = V;
};
mkPerAdj : Str -> {s: NounClass => Number => Str; p_form: Str; t: TType} = \x ->
{
s = table {
NC9_10 => table {Sg => "" + x; Pl => "" + x};
NC14_6 => table {Sg => "" + x; Pl => "" + x}
};
p_form = "mo" ++ x;
t = P;
};
mkVeryAdj : {s: NounClass => Number => Str; p_form: Str; t: TType} -> {s: NounClass => Number => Str; p_form: Str; t: TType} = \x ->
{
s = table{c => table{n => (x.s!c!n) ++ "thata"}}; p_form = x.p_form ++ "thata"; t = x.t
};
mkVeryVerb : {s: NounClass => Number => Str; p_form: Str; t: TType} -> {s: NounClass => Number => Str; p_form: Str; t: TType} = \x ->
{
s = table{c => table{n => (x.s!c!n) ++ "thata"}}; p_form = x.p_form ++ "thata"; t = ModV
};
smartVery : {s: NounClass => Number => Str; p_form: Str; t: TType} -> {s: NounClass => Number => Str; p_form: Str; t: TType} =
\x -> case x.t of --(x.s!c!n)
{
(V | ModV) => mkVeryVerb x;
--ModV => mkVeryVerb x;
_ => mkVeryAdj x
};
mkDemPron1 : NounClass => Number => Str = table
{
NC9_10 => table {Sg => "e"; Pl => "tse"};
NC14_6 => table {Sg => "bo"; Pl => "a"}
};
mkDemPron2 : NounClass => Number => Str = table
{
NC9_10 => table {Sg => "eo"; Pl => "tseo"};
NC14_6 => table {Sg => "boo"; Pl => "ao"}
};
smartQualRelPart : TType -> (NounClass => Number => Str) = \x -> case x of
{
P => mkQualRelPart_PName;
_ => mkQualRelPart
};
mkQualRelPart : NounClass => Number => Str = table
{
NC9_10 => table {Sg => "e"; Pl => "tse"};
NC14_6 => table {Sg => "bo"; Pl => "a"}
};
mkQualRelPart_PName : NounClass => Number => Str = table
{
NC9_10 => table {Sg => "ya"; Pl => "tsa"};
NC14_6 => table {Sg => "ba"; Pl => "a"}
};
smartDescrCop : TType -> (NounClass => Number => Str) = \x -> case x of
{
P => mkDescrCop_PName;
_ => mkDescrCop
};
mkDescrCop : NounClass => Number => Str = table
{
NC9_10 => table {Sg => "e"; Pl => "di"};
NC14_6 => table {Sg => "bo"; Pl => "a"}
};
mkDescrCop_PName : NounClass => Number => Str = table
{
NC9_10 => table {Sg => "ga"; Pl => "ga"};
NC14_6 => table {Sg => "ga"; Pl => "ga"}
};
mkPredDescrCop : TType -> (NounClass => Number => Str) = \x -> case x of
{
V => table {NC9_10 => table {Sg => "e" ++ "a"; Pl => "di" ++ "a"};
NC14_6 => table {Sg => "bo" ++ "a"; Pl => "a" ++ "a"}};
_ => table {NC9_10 => table {Sg => "e"; Pl => "di"};
NC14_6 => table {Sg => "bo"; Pl => "a"}}
};
}

View File

@@ -0,0 +1,140 @@
{-
File : FoodsTur.gf
Author : Server Çimen
Version : 1.0
Created on: August 26, 2009
This file contains concrete grammar of Foods abstract grammar for Turkish Language.
This grammar is to be used for Fridge demo and developed in the scope of GF Resource
Grammar Summer School.
-}
concrete FoodsTur of Foods = open Predef in {
flags
coding=utf8 ;
lincat
Comment = {s : Str} ;
Quality = {s : Str ; c : Case; softness : Softness; h : Harmony} ;
Kind = {s : Case => Number => Str} ;
Item = {s : Str; n : Number} ;
lin
This = det Sg "bu" ;
That = det Sg "şu" ;
These = det Pl "bu" ;
Those = det Pl "şu" ;
-- Reason for excluding plural form of copula: In Turkish if subject is not a human being,
-- then singular form of copula is used regardless of the number of subject. Since all
-- possible subjects are non human, copula do not need to have plural form.
Pred item quality = {s = item.s ++ quality.s ++ "&+" ++ copula ! quality.softness ! quality.h} ;--! item.n} ;
Mod quality kind = {s = case quality.c of {
Nom => \\t,n => quality.s ++ kind.s ! t ! n ;
Gen => \\t,n => quality.s ++ kind.s ! Gen ! n
}
} ;
Wine = mkN "şarap" "şaraplar" "şarabı" "şarapları" ;
Cheese = mkN "peynir" "peynirler" "peyniri" "peynirleri" ;
Fish = mkN "balık" "balıklar" "balığı" "balıkları" ;
Pizza = mkN "pizza" "pizzalar" "pizzası" "pizzaları" ;
Very a = {s = "çok" ++ a.s ; c = a.c; softness = a.softness; h = a.h} ;
Fresh = adj "taze" Nom;
Warm = adj "ılık" Nom;
Italian = adj "İtalyan" Gen ;
Expensive = adj "pahalı" Nom;
Delicious = adj "lezzetli" Nom;
Boring = adj "sıkıcı" Nom;
param
Number = Sg | Pl ;
Case = Nom | Gen ;
Harmony = I_Har | Ih_Har | U_Har | Uh_Har ; --Ih = İ; Uh = Ü
Softness = Soft | Hard ;
oper
det : Number -> Str -> {s : Case => Number => Str} -> {s : Str; n : Number} =
\num,det,noun -> {s = det ++ noun.s ! Nom ! num; n = num} ;
mkN = overload {
mkN : Str -> Str -> {s : Case => Number => Str} = regNoun ;
mkn : Str -> Str -> Str -> Str-> {s : Case => Number => Str} = noun ;
} ;
regNoun : Str -> Str -> {s : Case => Number => Str} =
\peynir,peynirler -> noun peynir peynirler [] [] ;
noun : Str -> Str -> Str -> Str-> {s : Case => Number => Str} =
\sarap,saraplar,sarabi,saraplari -> {
s = table {
Nom => table {
Sg => sarap ;
Pl => saraplar
} ;
Gen => table {
Sg => sarabi ;
Pl => saraplari
}
}
};
{-
Since there is a bug in overloading, this overload is useless.
mkA = overload {
mkA : Str -> {s : Str; c : Case; softness : Softness; h : Harmony} = \base -> adj base Nom ;
mkA : Str -> Case -> {s : Str; c : Case; softness : Softness; h : Harmony} = adj ;
} ;
-}
adj : Str -> Case -> {s : Str; c : Case; softness : Softness; h : Harmony} =
\italyan,ca -> {s = italyan ; c = ca; softness = (getSoftness italyan); h = (getHarmony italyan)} ;
-- See the comment at lines 26 and 27 for excluded plural form of copula.
copula : Softness => Harmony {-=> Number-} => Str =
table {
Soft => table {
I_Har => "dır" ;--table {
-- Sg => "dır" ;
-- Pl => "dırlar"
--} ;
Ih_Har => "dir" ;--table {
--Sg => "dir" ;
--Pl => "dirler"
--} ;
U_Har => "dur" ;--table {
-- Sg => "dur" ;
-- Pl => "durlar"
--} ;
Uh_Har => "dür" --table {
--Sg => "dür" ;
--Pl => "dürler"
--}
} ;
Hard => table {
I_Har => "tır" ;--table {
--Sg => "tır" ;
--Pl => "tırlar"
--} ;
Ih_Har => "tir" ;--table {
--Sg => "tir" ;
--Pl => "tirler"
--} ;
U_Har => "tur" ;--table {
-- Sg => "tur" ;
-- Pl => "turlar"
--} ;
Uh_Har => "tür"--table {
--Sg => "tür" ;
--Pl => "türler"
--}
}
} ;
getHarmony : Str -> Harmony
= \base -> case base of {
_+c@("ı"|"a"|"i"|"e"|"u"|"o"|"ü"|"ö")+
("b"|"v"|"d"|"z"|"j"|"c"|"g"|"ğ"|"l"|"r"|"m"|"n"|"y"|"p"|"f"|"t"|"s"|"ş"|"ç"|"k"|"h")* =>
case c of {
("ı"|"a") => I_Har ;
("i"|"e") => Ih_Har ;
("u"|"o") => U_Har ;
("ü"|"ö") => Uh_Har
}
} ;
getSoftness : Str -> Softness
= \base -> case base of {
_+("f"|"s"|"t"|"k"|"ç"|"ş"|"h"|"p") => Hard ;
_ => Soft
} ;
}

View File

@@ -0,0 +1,53 @@
-- (c) 2009 Shafqat Virk under LGPL
concrete FoodsUrd of Foods = {
flags coding=utf8 ;
param Number = Sg | Pl ;
param Gender = Masc | Fem;
oper coupla : Number -> Str =\n -> case n of {Sg => "ہے" ; Pl => "ہیں"};
lincat
Comment = {s : Str} ;
Item = {s: Str ; n: Number ; g:Gender};
Kind = {s: Number => Str ; g:Gender};
Quality = {s: Gender => Number => Str};
lin
Pred item quality = {s = item.s ++ quality.s ! item.g ! item.n ++ coupla item.n} ;
This kind = {s = "یھ" ++ kind.s ! Sg; n= Sg ; g = kind.g } ;
These kind = {s = "یھ" ++ kind.s ! Pl; n = Pl ; g = kind.g} ;
That kind = {s = "وہ" ++ kind.s ! Sg; n= Sg ; g = kind.g} ;
Those kind = {s = "وہ" ++ kind.s ! Pl; n=Pl ; g = kind.g} ;
Mod quality kind = {s = \\n => quality.s ! kind.g ! n ++ kind.s ! n ; g = kind.g};
Wine = {s = table { Sg => "شراب" ; Pl => "شرابیں"} ; g = Fem};
Cheese = {s = table { Sg => "پنیر" ; Pl => "پنیریں"} ; g = Fem};
Fish = {s = table { Sg => "مچھلی" ; Pl => "مچھلیاں"} ; g = Fem};
Pizza = {s = table { Sg => "پیزہ" ; Pl => "پیزے"} ; g = Masc};
Very quality = {s = \\g,n => "بہت" ++ quality.s ! g ! n} ;
Fresh = regAdj "تازہ" ;
Warm = regAdj "گرم" ;
Italian = regAdj "اٹا لوی" ;
Expensive = regAdj "مہنگا" ;
Delicious = regAdj "مزیدار" ;
Boring = regAdj "فضول" ;
oper
regAdj : Str -> {s: Gender => Number => Str} = \a -> case a of {
x + "ا" => mkAdj a (x+"ے") (x+"ی");
_ => mkAdj a a a
};
mkAdj : Str -> Str -> Str -> {s: Gender => Number => Str} = \s,p,f -> {
s = table {
Masc => table {
Sg => s;
Pl => p
};
Fem => \\_ => f
}
};
}

View File

@@ -0,0 +1,15 @@
-- (c) 2009 Aarne Ranta under LGPL
interface LexFoods = open Syntax in {
oper
wine_N : N ;
pizza_N : N ;
cheese_N : N ;
fish_N : N ;
fresh_A : A ;
warm_A : A ;
italian_A : A ;
expensive_A : A ;
delicious_A : A ;
boring_A : A ;
}

View File

@@ -0,0 +1,18 @@
-- (c) 2009 Jordi Saludes under LGPL
instance LexFoodsCat of LexFoods =
open SyntaxCat, ParadigmsCat, (M = MorphoCat) in {
flags
coding = utf8 ;
oper
wine_N = mkN "vi" "vins" M.Masc ;
pizza_N = mkN "pizza" ;
cheese_N = mkN "formatge" ;
fish_N = mkN "peix" "peixos" M.Masc;
fresh_A = mkA "fresc" "fresca" "frescos" "fresques" "frescament";
warm_A = mkA "calent" ;
italian_A = mkA "italià" "italiana" "italians" "italianes" "italianament" ;
expensive_A = mkA "car" ;
delicious_A = mkA "deliciós" "deliciosa" "deliciosos" "delicioses" "deliciosament";
boring_A = mkA "aburrit" "aburrida" "aburrits" "aburrides" "aburridament" ;
}

View File

@@ -0,0 +1,21 @@
-- (c) 2009 Aarne Ranta under LGPL
instance LexFoodsFin of LexFoods =
open SyntaxFin, ParadigmsFin in {
flags coding=utf8;
oper
wine_N = mkN "viini" ;
pizza_N = mkN "pizza" ;
cheese_N = mkN "juusto" ;
fish_N = mkN "kala" ;
fresh_A = mkA "tuore" ;
warm_A = mkA
(mkN "lämmin" "lämpimän" "lämmintä" "lämpimänä" "lämpimään"
"lämpiminä" "lämpimiä" "lämpimien" "lämpimissä" "lämpimiin"
)
"lämpimämpi" "lämpimin" ;
italian_A = mkA "italialainen" ;
expensive_A = mkA "kallis" ;
delicious_A = mkA "herkullinen" ;
boring_A = mkA "tylsä" ;
}

View File

@@ -0,0 +1,17 @@
-- (c) 2009 Aarne Ranta under LGPL
instance LexFoodsGer of LexFoods =
open SyntaxGer, ParadigmsGer in {
flags coding=utf8;
oper
wine_N = mkN "Wein" ;
pizza_N = mkN "Pizza" "Pizzen" feminine ;
cheese_N = mkN "Käse" "Käse" masculine ;
fish_N = mkN "Fisch" ;
fresh_A = mkA "frisch" ;
warm_A = mkA "warm" "wärmer" "wärmste" ;
italian_A = mkA "italienisch" ;
expensive_A = mkA "teuer" ;
delicious_A = mkA "köstlich" ;
boring_A = mkA "langweilig" ;
}

View File

@@ -0,0 +1,16 @@
-- (c) 2009 Aarne Ranta under LGPL
instance LexFoodsIta of LexFoods =
open SyntaxIta, ParadigmsIta in {
oper
wine_N = mkN "vino" ;
pizza_N = mkN "pizza" ;
cheese_N = mkN "formaggio" ;
fish_N = mkN "pesce" ;
fresh_A = mkA "fresco" ;
warm_A = mkA "caldo" ;
italian_A = mkA "italiano" ;
expensive_A = mkA "caro" ;
delicious_A = mkA "delizioso" ;
boring_A = mkA "noioso" ;
}

View File

@@ -0,0 +1,17 @@
-- (c) 2009 Aarne Ranta under LGPL
instance LexFoodsSwe of LexFoods =
open SyntaxSwe, ParadigmsSwe in {
flags coding=utf8;
oper
wine_N = mkN "vin" "vinet" "viner" "vinerna" ;
pizza_N = mkN "pizza" ;
cheese_N = mkN "ost" ;
fish_N = mkN "fisk" ;
fresh_A = mkA "färsk" ;
warm_A = mkA "varm" ;
italian_A = mkA "italiensk" ;
expensive_A = mkA "dyr" ;
delicious_A = mkA "läcker" ;
boring_A = mkA "tråkig" ;
}

View File

@@ -0,0 +1,46 @@
-- (c) 2011 Katerina Bohmova under LGPL
resource ResCze = open Prelude in {
flags
coding = utf8 ;
param
Number = Sg | Pl ;
Gender = Masc | Fem | Neutr;
oper
NounPhrase : Type =
{s : Str ; g : Gender ; n : Number} ;
Noun : Type = {s : Number => Str ; g : Gender} ;
Adjective : Type = {s : Gender => Number => Str} ;
det : Number -> Str -> Str -> Str -> Noun -> NounPhrase =
\n,m,f,ne,cn -> {
s = table {Masc => m ; Fem => f; Neutr => ne} ! cn.g ++
cn.s ! n ;
g = cn.g ;
n = n
} ;
noun : Str -> Str -> Gender -> Noun =
\muz,muzi,g -> {
s = table {Sg => muz ; Pl => muzi} ;
g = g
} ;
adjective : (msg,fsg,nsg,mpl,fpl,npl : Str) -> Adjective =
\msg,fsg,nsg,mpl,fpl,npl -> {
s = table {
Masc => table {Sg => msg ; Pl => mpl} ;
Fem => table {Sg => fsg ; Pl => fpl} ;
Neutr => table {Sg => nsg ; Pl => npl}
}
} ;
regAdj : Str -> Adjective =
\mlad ->
adjective (mlad+"ý") (mlad+"á") (mlad+"é")
(mlad+"é") (mlad+"é") (mlad+"á") ;
regnfAdj : Str -> Adjective =
\vynikajici ->
adjective vynikajici vynikajici vynikajici
vynikajici vynikajici vynikajici;
copula : Number => Str =
table {Sg => "je" ; Pl => "jsou"} ;
}

View File

@@ -0,0 +1,75 @@
-- (c) 2009 Aarne Ranta under LGPL
concrete FoodsHin of Foods = {
flags coding=utf8 ;
param
Gender = Masc | Fem ;
Number = Sg | Pl ;
lincat
Comment = {s : Str} ;
Item = {s : Str ; g : Gender ; n : Number} ;
Kind = {s : Number => Str ; g : Gender} ;
Quality = {s : Gender => Number => Str} ;
lin
Pred item quality = {
s = item.s ++ quality.s ! item.g ! item.n ++ copula item.n
} ;
This kind = {s = "yah" ++ kind.s ! Sg ; g = kind.g ; n = Sg} ;
That kind = {s = "vah" ++ kind.s ! Sg ; g = kind.g ; n = Sg} ;
These kind = {s = "ye" ++ kind.s ! Pl ; g = kind.g ; n = Pl} ;
Those kind = {s = "ve" ++ kind.s ! Pl ; g = kind.g ; n = Pl} ;
Mod quality kind = {
s = \\n => quality.s ! kind.g ! n ++ kind.s ! n ;
g = kind.g
} ;
Wine = regN "madirA" ;
Cheese = regN "panIr" ;
Fish = regN "maClI" ;
Pizza = regN "pijjA" ;
Very quality = {s = \\g,n => "bahut" ++ quality.s ! g ! n} ;
Fresh = regAdj "tAzA" ;
Warm = regAdj "garam" ;
Italian = regAdj "i-t.alI" ;
Expensive = regAdj "mahaNgA" ;
Delicious = regAdj "rucikar" ;
Boring = regAdj "pEriyA" ;
oper
mkN : Str -> Str -> Gender -> {s : Number => Str ; g : Gender} =
\s,p,g -> {
s = table {
Sg => s ;
Pl => p
} ;
g = g
} ;
regN : Str -> {s : Number => Str ; g : Gender} = \s -> case s of {
lark + "A" => mkN s (lark + "e") Masc ;
lark + "I" => mkN s (lark + "iyaM") Fem ;
_ => mkN s s Masc
} ;
mkAdj : Str -> Str -> Str -> {s : Gender => Number => Str} = \ms,mp,f -> {
s = table {
Masc => table {
Sg => ms ;
Pl => mp
} ;
Fem => \\_ => f
}
} ;
regAdj : Str -> {s : Gender => Number => Str} = \a -> case a of {
acch + "A" => mkAdj a (acch + "e") (acch + "I") ;
_ => mkAdj a a a
} ;
copula : Number -> Str = \n -> case n of {
Sg => "hE" ;
Pl => "hEN"
} ;
}

View File

@@ -0,0 +1,60 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN""http://www.w3.org/TR/REC-html40/frameset.dtd">
<html>
<head>
$Common_meta()$
<title>
Android API Differences Report
</title>
<body>
<div class="body">
$Header()$
<div class="content">
<h2>Android API Differences Report</h2>
<p>This document details the changes in the Android framework API. It shows
additions, modifications, and removals for packages, classes, methods, and
fields. Each reference to an API change includes a brief description of the
API and an explanation of the change and suggested workaround, where available.</p>
<p>The differences described in this report are based a comparison of the APIs
whose versions are specified in the upper-right corner of this page. It compares a
newer "to" API to an older "from" version, noting any changes relative to the
older API. So, for example, indicated API removals are no longer present in the "to"
API.</p>
<p>For more information about the Android framework API and SDK,
see the <a href="http://code.google.com/android/index.html" target="_top">Android product site</a>.</p>
$if(no_delta)$
<h3>Congratulation!</h3>
No differences were detected between the two provided APIs.
$endif$
$if(removed_packages)$
$Table(name="Removed Packages", rows=removed_packages:{$it.from:ModelElementRow()$})$
<br/>
$endif$
$if(added_packages)$
$Table(name="Added Packages", rows=added_packages:{$it.to:PackageAddedLink()$}:SimpleTableRow())$
<br/>
$endif$
$if(changed_packages)$
$Table(name="Changed Packages", rows=changed_packages:{$it.to:PackageChangedLink()$}:SimpleTableRow())$
<br/>
$endif$
</div>
</div>
</body>
</html>

31
samples/HTML/pages.html Normal file
View File

@@ -0,0 +1,31 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>Related Pages</title>
<link href="qt.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div class=header>
<a class=headerLink href="index.html">Main Page</a> &middot;
<a class=headerLink href="classoverview.html">Class Overview</a> &middot;
<a class=headerLink href="hierarchy.html">Hierarchy</a> &middot;
<a class=headerLink href="annotated.html">All Classes</a>
</div>
<!-- Generated by Doxygen 1.8.1.2 -->
</div><!-- top -->
<div class="header">
<div class="headertitle">
<div class="title">Related Pages</div> </div>
</div><!--header-->
<div class="contents">
<div class="textblock">Here is a list of all related documentation pages:</div><div class="directory">
<table class="directory">
<tr id="row_0_" class="even"><td class="entry"><img src="ftv2node.png" alt="o" width="16" height="22" /><a class="el" href="classoverview.html" target="_self">Class Overview</a></td><td class="desc"></td></tr>
<tr id="row_1_"><td class="entry"><img src="ftv2lastnode.png" alt="\" width="16" height="22" /><a class="el" href="thelayoutsystem.html" target="_self">The Layout System</a></td><td class="desc"></td></tr>
</table>
</div><!-- directory -->
</div><!-- contents -->
<div class="footer" />Generated with <a href="http://www.doxygen.org/index.html">Doxygen</a> 1.8.1.2</div>
</body>
</html>

6
samples/Haskell/Hello.hs Normal file
View File

@@ -0,0 +1,6 @@
import Data.Char
main :: IO ()
main = do
let hello = "hello world"
putStrLn $ map toUpper hello

33
samples/Haskell/Main.hs Normal file
View File

@@ -0,0 +1,33 @@
module Main where
import Sudoku
import Data.Maybe
sudoku :: Sudoku
sudoku = [8, 0, 1, 3, 4, 0, 0, 0, 0,
4, 3, 0, 8, 0, 0, 1, 0, 7,
0, 0, 0, 0, 6, 0, 0, 0, 3,
2, 0, 8, 0, 5, 0, 0, 0, 9,
0, 0, 9, 0, 0, 0, 7, 0, 0,
6, 0, 0, 0, 7, 0, 8, 0, 4,
3, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 5, 0, 0, 6, 0, 4, 2,
0, 0, 0, 0, 2, 4, 3, 0, 8]
{-
sudoku :: Sudoku
sudoku = [8, 6, 1, 3, 4, 7, 2, 9, 5,
4, 3, 2, 8, 9, 5, 1, 6, 7,
9, 5, 7, 1, 6, 2, 4, 8, 3,
2, 7, 8, 4, 5, 1, 6, 3, 9,
5, 4, 9, 6, 8, 3, 7, 2, 1,
6, 1, 3, 2, 7, 9, 8, 5, 4,
3, 2, 4, 9, 1, 8, 5, 7, 6,
1, 8, 5, 7, 3, 6, 9, 4, 2,
7, 9, 6, 5, 2, 4, 3, 1, 8]
-}
main :: IO ()
main = do
putStrLn $ pPrint sudoku ++ "\n\n"
putStrLn $ pPrint $ fromMaybe [] $ solve sudoku

46
samples/Haskell/Sudoku.hs Normal file
View File

@@ -0,0 +1,46 @@
module Sudoku
(
Sudoku,
solve,
isSolved,
pPrint
) where
import Data.Maybe
import Data.List
import Data.List.Split
type Sudoku = [Int]
solve :: Sudoku -> Maybe Sudoku
solve sudoku
| isSolved sudoku = Just sudoku
| otherwise = do
index <- elemIndex 0 sudoku
let sudokus = [nextTest sudoku index i | i <- [1..9],
checkRow (nextTest sudoku index i) index,
checkColumn (nextTest sudoku index i) index,
checkBox (nextTest sudoku index i) index]
listToMaybe $ mapMaybe solve sudokus
where nextTest sudoku index i = take index sudoku ++ [i] ++ drop (index+1) sudoku
checkRow sudoku index = (length $ getRow sudoku index) == (length $ nub $ getRow sudoku index)
checkColumn sudoku index = (length $ getColumn sudoku index) == (length $ nub $ getColumn sudoku index)
checkBox sudoku index = (length $ getBox sudoku index) == (length $ nub $ getBox sudoku index)
getRow sudoku index = filter (/=0) $ (chunksOf 9 sudoku) !! (quot index 9)
getColumn sudoku index = filter (/=0) $ (transpose $ chunksOf 9 sudoku) !! (mod index 9)
getBox sudoku index = filter (/=0) $ (map concat $ concatMap transpose $ chunksOf 3 $ map (chunksOf 3) $ chunksOf 9 sudoku)
!! (3 * (quot index 27) + (quot (mod index 9) 3))
isSolved :: Sudoku -> Bool
isSolved sudoku
| product sudoku == 0 = False
| map (length . nub) sudokuRows /= map length sudokuRows = False
| map (length . nub) sudokuColumns /= map length sudokuColumns = False
| map (length . nub) sudokuBoxes /= map length sudokuBoxes = False
| otherwise = True
where sudokuRows = chunksOf 9 sudoku
sudokuColumns = transpose sudokuRows
sudokuBoxes = map concat $ concatMap transpose $ chunksOf 3 $ map (chunksOf 3) $ chunksOf 9 sudoku
pPrint :: Sudoku -> String
pPrint sudoku = intercalate "\n" $ map (intercalate " " . map show) $ chunksOf 9 sudoku

View File

@@ -0,0 +1,6 @@
Version 1 of Trivial Extension by Andrew Plotkin begins here.
A cow is a kind of animal. A cow can be purple.
Trivial Extension ends here.

12
samples/Inform 7/story.ni Normal file
View File

@@ -0,0 +1,12 @@
"Test Case" by Andrew Plotkin.
Include Trivial Extension by Andrew Plotkin.
The Kitchen is a room.
[This kitchen is modelled after the one in Zork, although it lacks the detail to establish this to the player.]
A purple cow called Gelett is in the Kitchen.
Instead of examining Gelett:
say "You'd rather see than be one."

9
samples/JSONiq/detail.jq Normal file
View File

@@ -0,0 +1,9 @@
(: Query for returning one database entry :)
import module namespace req = "http://www.28msec.com/modules/http-request";
import module namespace catalog = "http://guide.com/catalog";
variable $id := (req:param-values("id"), "London")[1];
variable $part := (req:param-values("part"), "main")[1];
catalog:get-data-by-key($id, $part)

17
samples/JSONiq/query.jq Normal file
View File

@@ -0,0 +1,17 @@
(: Query for searching the database for keywords :)
import module namespace index = "http://guide.com/index";
import module namespace catalog = "http://guide.com/catalog";
import module namespace req = "http://www.28msec.com/modules/http-request";
variable $phrase := (req:param-values("q"), "London")[1];
variable $limit := integer((req:param-values("limit"), 5)[1]);
[
for $result at $idx in index:index-search($phrase)
where $idx le $limit
let $data := catalog:get-data-by-id($result.s, $result.p)
return
{| { score : $result.r } , $data |}
]

8
samples/Kit/demo.kit Normal file
View File

@@ -0,0 +1,8 @@
<!-- $pageTitle: The Kit Language -->
<section>
<h1><!-- $pageTitle --></h1>
<p>
<!-- @include "loremipsum" -->
</p>
</section>

View File

@@ -0,0 +1,59 @@
{**
* @param string $basePath web base path
* @param string $robots tell robots how to index the content of a page (optional)
* @param array $flashes flash messages
*}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description" content="">
<meta name="author" content="">
<meta name="robots" content="{$robots}" n:ifset="$robots">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{ifset $title}{$title} {/ifset}Translation report</title>
<link rel="stylesheet" media="screen,projection,tv" href="{$cdnUrl}/css/style.css?v={$cssHash}">
<link rel="shortcut icon" href="{$cdnUrl}/favicon.png">
<!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
<![endif]-->
<script n:syntax="off">
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-33892654-4', 'khanovaskola.cz');
ga('send', 'pageview');
</script>
{block #head}{/block}
</head>
<body class="amara-guest history-empty">
<script> document.documentElement.className+=' js' </script>
{block #navbar}
{include _navbar.latte}
{/block}
<div class="container">
<div class="row">
<div class="col-md-8 col-md-offset-2" n:inner-foreach="$flashes as $flash">
{include _flash.latte, flash => $flash}
</div>
</div>
{include #content}
</div>
<footer>
</footer>
<script src="{$cdnUrl}/js/compiled.js?v={$jsHash}"></script>
{block #scripts}{/block}
</body>
</html>

View File

@@ -0,0 +1,243 @@
{var $title => "⚐ {$new->title}"}
{define author}
<a n:href="Author: authorId => $author->id" class="black">
<img src="{$author->avatar}" width="32" height="32" class="img-rounded">
<span class="{$class}">{$author->name|trim}</span>
</a>
<span data-toggle="tooltip" title="Total time {$author->shortName} translated on all videos.">
{$author->estimatedTimeTranslated|secondsToTime}{*
*}</span>{if $author->joined}, {/if}
{if $author->joined}joined {$author->joined|timeAgo}{/if}{*
*}{ifset $postfix}, {$postfix}{/ifset}
{/define}
{block #scripts}
<script src="{$amaraCallbackLink}"></script>
{/block}
{block #content}
{if isset($old)}
<h1>Diffing revision #{$old->revision} and #{$new->revision}</h1>
{else}
<h1>First revision</h1>
{/if}
{var $editor = $user->loggedIn && $new->language === 'cs'}
{var $rev = $new->video->siteRevision}
<div class="row">
<div class="col-md-7">
<p>
published <b>{$new->publishedAt|timeAgo}</b>{*
*}{ifset $old},
<span>
{$new->textChange * 100|number}&thinsp;% text change{*
*}</span>{*
*}{if $new->timeChange},
<span>
{$new->timeChange * 100|number}&thinsp;% timing change
</span>
{/if}
{/ifset}
</p>
{cache $new->id, expires => '+4 hours'}
<p>
{if isset($old) && $old->author->name !== $new->author->name}
{include author, author => $old->author, class => 'author-old'}
&mdash;
{include author, author => $new->author, class => 'author-new'}
{elseif isset($old)}
{include author, author => $new->author, class => 'author-new', postfix => 'authored both revisions'}
{else}
{include author, author => $new->author, class => 'author-new'}
{/if}
</p>
{/cache}
{var $threshold = 10}
{cache $new->id}
{var $done = $new->timeTranslated}
{var $outOf = $new->video->canonicalTimeTranslated}
{if $outOf}
<p n:if="$outOf > $done + $threshold" class="alert alert-warning">
Only {$done|time} translated out of {$outOf|time},
{(1-$done/$outOf) * 100|number}&thinsp;% ({$outOf - $done|time}) left
</p>
<p n:if="$outOf <= $done + $threshold" class="alert alert-success">
Seems complete: {$done|time} translated out of {$outOf|time}
</p>
{elseif $done}
<p n:if="$outOf <= $done + $threshold" class="alert alert-info">
Although {$done|time} is translated, there are no English subtitles for comparison.
</p>
{/if}
{/cache}
{if $editor}
{var $ksid = $new->video->siteId}
{if $ksid}
<a href="https://khanovaskola.cz/watch/default/?vid={$ksid}">
Video on khanovaskola.cz
{if $new->revision === $rev}
(on this revision)
{elseif $new->revision > $rev}
(on older revision #{$rev})
{else}
(on newer revision #{$rev})
{/if}
</a>
{/if}
{/if}
<h3 class="diff">{$diffs->title|noescape}</h3>
<div class="lead diff">{$diffs->description|noescape}</div>
<div class="diff subtitles">
<div n:foreach="$diffs->text as $line" class="line" data-context="{$line->context}">
{$line->text|noescape}&nbsp;
</div>
<div class="splitter template">
<span data-toggle="tooltip" data-placement="bottom" title="Expand">
<i class="fa fa-sort"></i> <i class="fa fa-ellipsis-h"></i>
</span>
</div>
</div>
{if $editor}
{if $new->approved}
<span class="text-success">
Revision has been approved{if $new->editor} by {$new->editor->name}{/if}.
</span>
<a n:href="amaraEdit, amaraId => $new->video->amaraId" n:block="editButton" class="btn btn-default">
<i class="fa fa-edit"></i>
Edit on Amara
</a>
<a n:href="khanAcademy" n:block="kaButton" class="btn btn-link">
on Khan Academy
</a>
{elseif $new->incomplete}
<span class="text-info">
Revision has been marked as incomplete by {if $new->editor}{$new->editor->name}{/if}.
</span>
{include editButton}
{include kaButton}
{* else $new->status === UNSET: *}
{elseif $new->video->siteId}
<div class="btn-group">
<a n:href="approve!" class="btn btn-default">
<i class="fa fa-thumbs-o-up"></i>
Approve (update kš)
</a>
<a n:href="markIncomplete!" class="btn btn-default">
<i class="fa fa-thumbs-o-down"></i>
Mark as incomplete
</a>
{include editButton}
</div>
{include kaButton}
{else}
<div class="btn-group">
<a n:href="redirectToAdd!" class="btn btn-default">
<i class="fa fa-plus-square-o"></i>
Approve (add to kš)
</a>
<a n:href="markIncomplete!" class="btn btn-default">
<i class="fa fa-thumbs-o-down"></i>
Mark as incomplete
</a>
{include editButton}
</div>
{include kaButton}
<div>
<h5>Filed under category:</h5>
{foreach $new->video->categories as $list}
&mdash; {$list|implode:' '}{sep}<br>{/sep}
{/foreach}
</div>
{/if}
{/if}
</div>
<div class="col-md-5">
<h4>All revisions:</h4>
<table class="table table-condensed revisions">
{foreach $new->video->getRevisionsIn($new->language) as $revision}
<tr n:class="$revision->revision === $new->revision ? 'active'">
<td class="revision">
<a n:href="this, revId => $revision->id">#{$revision->revision}</a>
</td>
<td>
<a n:href="Author: authorId => $revision->author->id" class="black">
<img src="{$revision->author->avatar}" width="32" height="32" class="img-rounded">
{$revision->author->name}
</a>
</td>
<td>
<span class="secondary">
{$revision->publishedAt|timeAgo}
</span>
</td>
<td>
{* vars $outOf, $threshold already set *}
{default $outOf = $new->video->canonicalTimeTranslated}
{if $outOf} {* ignore if canonical time not set *}
{var $done = $revision->timeTranslated}
<span n:if="$outOf > $done + $threshold" class="text-warning"
data-toggle="tooltip" title="Percent of lines translated">
{$done/$outOf * 100|number}&thinsp;%
</span>
<span n:if="$outOf <= $done + $threshold" class="text-success">
~100&thinsp;%
</span>
{/if}
</td>
<td>
{if $revision->incomplete || $revision->approved}
{var $i = $revision->incomplete}
<span n:class="$i ? 'text-warning' : 'text-success'">
{if $i}incomplete{else}approved{/if}
</span>
{/if}
</td>
{if $user->loggedIn && $revision->comments->count()}
</tr>
<tr class="row-noborder">
<td colspan="99">
<table class="comments">
<tr n:foreach="$revision->comments as $comment">
<td class="col-comment-author">
<span class="secondary" data-toggle="tooltip" data-placement="left"
title="{$comment->createdAt|timeAgo}">
{$comment->user->name}:
</span>
</td>
<td>
<span>
{$comment->text}
</span>
</td>
</tr>
</table>
</td>
{/if}
{if $user->loggedIn && $new->id === $revision->id}
</tr>
<tr class="row-noborder">
<td colspan="99">
{form commentForm}
<div class="input-group comment-input">
{input text, class => "form-control", placeholder => "Comment this revision (only visible to other editors)"}
<span class="input-group-btn">
<button class="btn btn-default" n:name="save">
<i class="fa fa-share"></i>
</button>
</span>
</div>
{/form}
</td>
{/if}
</tr>
{/foreach}
</table>
</div>
</div>

View File

@@ -0,0 +1,104 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>{{shop.name}} - {{page_title}}</title>
{{ 'textile.css' | global_asset_url | stylesheet_tag }}
{{ 'lightbox/v204/lightbox.css' | global_asset_url | stylesheet_tag }}
{{ 'prototype/1.6/prototype.js' | global_asset_url | script_tag }}
{{ 'scriptaculous/1.8.2/scriptaculous.js' | global_asset_url | script_tag }}
{{ 'lightbox/v204/lightbox.js' | global_asset_url | script_tag }}
{{ 'option_selection.js' | shopify_asset_url | script_tag }}
{{ 'layout.css' | asset_url | stylesheet_tag }}
{{ 'shop.js' | asset_url | script_tag }}
{{ content_for_header }}
</head>
<body id="page-{{template}}">
<p class="hide"><a href="#rightsiders">Skip to navigation.</a></p>
<!-- mini cart -->
{% if cart.item_count > 0 %}
<div id="minicart" style="display:none;"><div id="minicart-inner">
<div id="minicart-items">
<h2>There {{ cart.item_count | pluralize: 'is', 'are' }} {{ cart.item_count }} {{ cart.item_count | pluralize: 'item', 'items' }} in <a href="/cart" title="View your cart">your cart</a>!</h2><h4 style="font-size: 16px; margin: 0 0 10px 0; padding: 0;">Your subtotal is {{ cart.total_price | money }}.</h4>
{% for item in cart.items %}
<div class="thumb">
<div class="prodimage"><a href="{{item.product.url}}" onMouseover="tooltip('{{ item.quantity }} x {{ item.title }} ({{ item.variant.title }})', 200)"; onMouseout="hidetooltip()"><img src="{{ item.product.featured_image | product_img_url: 'thumb' }}" /></a></div>
</div>
{% endfor %}
</div>
<br style="clear:both;" />
</div></div>
{% endif %}
<div id="container">
<div id="header">
<!-- Begin Header -->
<h1 id="logo"><a href="/" title="Go Home">{{shop.name}}</a></h1>
<div id="cartlinks">
{% if cart.item_count > 0 %}
<h2 id="cartcount"><a href="/cart" onMouseover="tooltip('There {{ cart.item_count | pluralize: 'is', 'are' }} {{ cart.item_count }} {{ cart.item_count | pluralize: 'item', 'items' }} in your cart!', 200)"; onMouseout="hidetooltip()">{{ cart.item_count }} {{ cart.item_count | pluralize: 'thing', 'things' }}!</a></h2>
<a href="/cart" id="minicartswitch" onclick="superSwitch(this, 'minicart', 'Close Mini Cart'); return false;" id="cartswitch">View Mini Cart ({{ cart.total_price | money }})</a>
{% endif %}
</div>
<!-- End Header -->
</div>
<hr />
<div id="main">
<div id="content">
<div id="innercontent">
{{ content_for_layout }}
</div>
</div>
<hr />
<div id="rightsiders">
<ul class="rightlinks">
{% for link in linklists.main-menu.links %}
<li>{{ link.title | link_to: link.url }}</li>
{% endfor %}
</ul>
{% if tags %}
<ul class="rightlinks">
{% for tag in collection.tags %}
<li><span class="add-link">{{ '+' | link_to_add_tag: tag }}</span>{{ tag | highlight_active_tag | link_to_tag: tag }}</li>
{% endfor %}
</ul>
{% endif %}
<ul class="rightlinks">
{% for link in linklists.footer.links %}
<li>{{ link.title | link_to: link.url }}</li>
{% endfor %}
</ul>
</div>
<hr /><br style="clear:both;" />
<div id="footer">
<div class="footerinner">
All prices are in {{ shop.currency }}.
Powered by <a href="http://www.shopify.com" title="Shopify, Hosted E-Commerce">Shopify</a>.
</div>
</div>
</div>
</div>
<div id="tooltip"></div>
<img id="pointer" src="{{ 'arrow2.gif' | asset_url }}" />
</body>
</html>

View File

@@ -0,0 +1,70 @@
<h3>We have wonderful products!</h3>
<ul id="products">
<div id="productpage">
<div id="productimages"><div id="productimages-top"><div id="productimages-bottom">
{% for image in product.images %}
{% if forloop.first %}
<a href="{{ image | product_img_url: 'large' }}" class="productimage" rel="lightbox">
<img src="{{ image | product_img_url: 'medium'}}" alt="{{product.title | escape }}" />
</a>
{% else %}
<a href="{{ image | product_img_url: 'large' }}" class="productimage-small" rel="lightbox">
<img src="{{ image | product_img_url: 'small'}}" alt="{{product.title | escape }}" />
</a>
{% endif %}
{% endfor %}
</div></div></div>
<h2>{{ product.title }}</h2>
<ul id="details" class="hlist">
<li>Vendor: {{ product.vendor | link_to_vendor }}</li>
<li>Type: {{ product.type | link_to_type }}</li>
</ul>
<small>{{ product.price_min | money }}{% if product.price_varies %} - {{ product.price_max | money }}{% endif %}</small>
<div id="variant-add">
<form action="/cart/add" method="post">
<select id="variant-select" name="id" class="product-info-options">
{% for variant in product.variants %}
<option value="{{ variant.id }}">{{ variant.title }} - {{ variant.price | money }}</option>
{% endfor %}
</select>
<div id="price-field" class="price"></div>
<div style="text-align:center;"><input type="image" name="add" value="Add to Cart" id="add" src="{{ 'addtocart.gif' | asset_url }}" /></div>
</form>
</div>
<div class="description textile">
{{ product.description }}
</div>
</div>
<script type="text/javascript">
<!--
// prototype callback for multi variants dropdown selector
var selectCallback = function(variant, selector) {
if (variant && variant.available == true) {
// selected a valid variant
$('add').removeClassName('disabled'); // remove unavailable class from add-to-cart button
$('add').disabled = false; // reenable add-to-cart button
$('price-field').innerHTML = Shopify.formatMoney(variant.price, "{{shop.money_with_currency_format}}"); // update price field
} else {
// variant doesn't exist
$('add').addClassName('disabled'); // set add-to-cart button to unavailable class
$('add').disabled = true; // disable add-to-cart button
$('price-field').innerHTML = (variant) ? "Sold Out" : "Unavailable"; // update price-field message
}
};
// initialize multi selector for product
Event.observe(document, 'dom:loaded', function() {
new Shopify.OptionSelectors("variant-select", { product: {{ product | json }}, onVariantSelected: selectCallback });
});
-->
</script>
</ul>

View File

@@ -0,0 +1,35 @@
<$mt:Var name="num_cols" value="6"$>
<$mt:Var name="index" value="0"$>
<mt:Categories>
<$mt:Var name="index" op="++" setvar="index"$>
<mt:SetVarBlock name="categories{$index}">
<a href="<$mt:CategoryArchiveLink$>"><$mt:CategoryLabel remove_html="1"$></a>
</mt:SetVarBlock>
</mt:Categories>
<$mt:Var name="categories" function="count" setvar="cat_count"$>
<$mt:Var name="cat_count" op="%" value="$num_cols" setvar="modulus"$>
<mt:If name="modulus" gt="0">
<$mt:Var name="cat_count" op="-" value="$modulus" setvar="cat_count_minus_mod"$>
<$mt:Var name="cat_count_minus_mod" op="/" value="$num_cols" setvar="cats_per_col"$>
<$mt:Var name="cats_per_col" op="+" value="1" setvar="cats_per_col"$>
<mt:Else>
<$mt:Var name="cat_count" op="/" value="$num_cols" setvar="cats_per_col"$>
</mt:If>
<mt:SetVarTemplate name="for_inner">
<$mt:Var name="index" op="++" setvar="index"$>
<mt:Unless name="index" gt="$cat_count">
<$mt:Var name="categories{$index}"$>
</mt:Unless>
</mt:SetVarTemplate>
<$mt:Var name="index" value="0"$>
<$mt:Var name="col_num" value="1"$>
<mt:For from="1" to="$num_cols">
<div class="col<$mt:Var name="col_num"$>">
<mt:For from="1" to="$cats_per_col">
<$mt:Var name="for_inner"$>
</mt:For>
</div>
<$mt:Var name="col_num" op="++" setvar="col_num"$>
</mt:For>

4843
samples/Mercury/code_info.m Normal file

File diff suppressed because it is too large Load Diff

72
samples/Mercury/expr.moo Normal file
View File

@@ -0,0 +1,72 @@
:- module expr.
:- interface.
:- import_module char, int, list.
:- type token
---> ('+')
; ('-')
; ('*')
; ('/')
; num(int)
; ('(')
; (')')
; eof
.
:- parse(exprn/1, token, eof, xx, in, out).
:- pred scan(list(char), list(token)).
:- mode scan(in, out) is det.
:- implementation.
:- import_module string, require.
:- rule exprn(int).
exprn(Num) ---> exprn(A), [+], term(B), { Num = A + B }.
exprn(Num) ---> exprn(A), [-], term(B), { Num = A - B }.
exprn(Num) ---> term(Num).
:- rule term(int).
term(Num) ---> term(A), [*], factor(B), { Num = A * B }.
term(Num) ---> term(A), [/], factor(B), { Num = A // B }.
term(Num) ---> factor(Num).
:- rule factor(int).
factor(Num) ---> ['('], exprn(Num), [')'].
factor(Num) ---> [num(Num)].
scan(Chars, Toks) :-
scan(Chars, [], Toks0),
list__reverse(Toks0, Toks).
:- pred scan(list(char), list(token), list(token)).
:- mode scan(in, in, out) is det.
scan([], Toks, [eof|Toks]).
scan([C|Cs], Toks0, Toks) :-
( char__is_whitespace(C) ->
scan(Cs, Toks0, Toks)
; char__is_digit(C) ->
takewhile(char__is_digit, [C|Cs], Digits, Rest),
string__from_char_list(Digits, NumStr),
Num = string__det_to_int(NumStr),
scan(Rest, [num(Num)|Toks0], Toks)
; C = ('+') ->
scan(Cs, ['+'|Toks0], Toks)
; C = ('-') ->
scan(Cs, ['-'|Toks0], Toks)
; C = ('*') ->
scan(Cs, ['*'|Toks0], Toks)
; C = ('/') ->
scan(Cs, ['/'|Toks0], Toks)
; C = ('(') ->
scan(Cs, ['('|Toks0], Toks)
; C = (')') ->
scan(Cs, [')'|Toks0], Toks)
;
error("expr: syntax error in input")
).

14
samples/Mercury/hello.m Normal file
View File

@@ -0,0 +1,14 @@
% "Hello World" in Mercury.
% This source file is hereby placed in the public domain. -fjh (the author).
:- module hello.
:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.
:- implementation.
main(!IO) :-
io.write_string("Hello, world\n", !IO).

5884
samples/Mercury/options.m Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,58 @@
% File: rot13_concise.m
% Main authors: Warwick Harvey <wharvey@cs.monash.edu.au>
% Fergus Henderson <fjh@cs.mu.oz.au>
%
% rot13_concise:
%
% Program to read its input, apply the rot13 algorithm, and write it out
% again.
%
% This version is more concise (but less efficient) than its companion,
% rot13_verbose.
%
% Key features:
% - is independent of character set (e.g. ASCII, EBCDIC)
% - has proper error handling
%
:- module rot13_concise.
:- interface.
:- import_module io.
:- pred main(state, state).
:- mode main(di, uo) is det.
:- implementation.
:- import_module char, int, string.
% The length of `alphabet' should be a multiple of `cycle'.
alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".
cycle = 26.
rot_n(N, Char) = RotChar :-
char_to_string(Char, CharString),
( if sub_string_search(alphabet, CharString, Index) then
NewIndex = (Index + N) mod cycle + cycle * (Index // cycle),
index_det(alphabet, NewIndex, RotChar)
else
RotChar = Char
).
rot13(Char) = rot_n(13, Char).
main -->
read_char(Res),
( { Res = ok(Char) },
print(rot13(Char)),
main
; { Res = eof }
; { Res = error(ErrorCode) },
{ error_message(ErrorCode, ErrorMessage) },
stderr_stream(StdErr),
print(StdErr, "rot13: error reading input: "),
print(StdErr, ErrorMessage),
nl(StdErr)
).

Some files were not shown because too many files have changed in this diff Show More