mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 09:40:21 +00:00
Merge branch 'master' into bye-bye-github
This commit is contained in:
6
.gitmodules
vendored
6
.gitmodules
vendored
@@ -797,3 +797,9 @@
|
||||
[submodule "vendor/grammars/actionscript3-tmbundle"]
|
||||
path = vendor/grammars/actionscript3-tmbundle
|
||||
url = https://github.com/simongregory/actionscript3-tmbundle
|
||||
[submodule "vendor/grammars/ABNF.tmbundle"]
|
||||
path = vendor/grammars/ABNF.tmbundle
|
||||
url = https://github.com/sanssecours/ABNF.tmbundle
|
||||
[submodule "vendor/grammars/EBNF.tmbundle"]
|
||||
path = vendor/grammars/EBNF.tmbundle
|
||||
url = https://github.com/sanssecours/EBNF.tmbundle
|
||||
|
||||
@@ -79,6 +79,7 @@ Here's our current build status: [.
|
||||
|
||||
If you experience an issue with the syntax-highlighting on GitHub, **please report the issue to the upstream grammar repository, not here.** Grammars are updated every time we build the Linguist gem and so upstream bug fixes are automatically incorporated as they are fixed.
|
||||
|
||||
## Overrides
|
||||
|
||||
Linguist supports a number of different custom overrides strategies for language definitions and vendored paths.
|
||||
|
||||
@@ -4,6 +4,8 @@ http://svn.edgewall.org/repos/genshi/contrib/textmate/Genshi.tmbundle/Syntaxes/M
|
||||
https://bitbucket.org/Clams/sublimesystemverilog/get/default.tar.gz:
|
||||
- source.systemverilog
|
||||
- source.ucfconstraints
|
||||
vendor/grammars/ABNF.tmbundle:
|
||||
- source.abnf
|
||||
vendor/grammars/Agda.tmbundle:
|
||||
- source.agda
|
||||
vendor/grammars/Alloy.tmbundle:
|
||||
@@ -20,6 +22,8 @@ vendor/grammars/ColdFusion:
|
||||
- text.html.cfm
|
||||
vendor/grammars/Docker.tmbundle:
|
||||
- source.dockerfile
|
||||
vendor/grammars/EBNF.tmbundle:
|
||||
- source.ebnf
|
||||
vendor/grammars/Elm/Syntaxes:
|
||||
- source.elm
|
||||
- text.html.mediawiki.elm-build-output
|
||||
|
||||
@@ -56,6 +56,7 @@ module Linguist
|
||||
generated_net_specflow_feature_file? ||
|
||||
composer_lock? ||
|
||||
node_modules? ||
|
||||
go_vendor? ||
|
||||
npm_shrinkwrap? ||
|
||||
godeps? ||
|
||||
generated_by_zephir? ||
|
||||
@@ -304,6 +305,14 @@ module Linguist
|
||||
!!name.match(/node_modules\//)
|
||||
end
|
||||
|
||||
# Internal: Is the blob part of the Go vendor/ tree,
|
||||
# not meant for humans in pull requests.
|
||||
#
|
||||
# Returns true or false.
|
||||
def go_vendor?
|
||||
!!name.match(/vendor\/((?!-)[-0-9A-Za-z]+(?<!-)\.)+(com|edu|gov|in|me|net|org|fm|io)/)
|
||||
end
|
||||
|
||||
# Internal: Is the blob a generated npm shrinkwrap file.
|
||||
#
|
||||
# Returns true or false.
|
||||
|
||||
@@ -49,6 +49,13 @@ ABAP:
|
||||
- ".abap"
|
||||
ace_mode: abap
|
||||
language_id: 1
|
||||
ABNF:
|
||||
type: data
|
||||
ace_mode: text
|
||||
extensions:
|
||||
- ".abnf"
|
||||
tm_scope: source.abnf
|
||||
language_id: 429
|
||||
AGS Script:
|
||||
type: programming
|
||||
color: "#B9D9FF"
|
||||
@@ -1022,6 +1029,15 @@ E:
|
||||
tm_scope: none
|
||||
ace_mode: text
|
||||
language_id: 92
|
||||
EBNF:
|
||||
type: data
|
||||
extensions:
|
||||
- ".ebnf"
|
||||
tm_scope: source.ebnf
|
||||
ace_mode: text
|
||||
codemirror_mode: ebnf
|
||||
codemirror_mime_type: text/x-ebnf
|
||||
language_id: 430
|
||||
ECL:
|
||||
type: programming
|
||||
color: "#8a1267"
|
||||
@@ -3384,6 +3400,15 @@ Python:
|
||||
aliases:
|
||||
- rusthon
|
||||
language_id: 303
|
||||
Python console:
|
||||
type: programming
|
||||
group: Python
|
||||
searchable: false
|
||||
aliases:
|
||||
- pycon
|
||||
tm_scope: text.python.console
|
||||
ace_mode: text
|
||||
language_id: 428
|
||||
Python traceback:
|
||||
type: data
|
||||
group: Python
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
module Linguist
|
||||
VERSION = "4.8.16"
|
||||
VERSION = "4.8.17"
|
||||
end
|
||||
|
||||
190
samples/ABNF/toml.abnf
Normal file
190
samples/ABNF/toml.abnf
Normal file
@@ -0,0 +1,190 @@
|
||||
; Source: https://github.com/toml-lang/toml
|
||||
; License: MIT
|
||||
|
||||
;; This is an attempt to define TOML in ABNF according to the grammar defined
|
||||
;; in RFC 4234 (http://www.ietf.org/rfc/rfc4234.txt).
|
||||
|
||||
;; TOML
|
||||
|
||||
toml = expression *( newline expression )
|
||||
expression = (
|
||||
ws /
|
||||
ws comment /
|
||||
ws keyval ws [ comment ] /
|
||||
ws table ws [ comment ]
|
||||
)
|
||||
|
||||
;; Newline
|
||||
|
||||
newline = (
|
||||
%x0A / ; LF
|
||||
%x0D.0A ; CRLF
|
||||
)
|
||||
|
||||
newlines = 1*newline
|
||||
|
||||
;; Whitespace
|
||||
|
||||
ws = *(
|
||||
%x20 / ; Space
|
||||
%x09 ; Horizontal tab
|
||||
)
|
||||
|
||||
;; Comment
|
||||
|
||||
comment-start-symbol = %x23 ; #
|
||||
non-eol = %x09 / %x20-10FFFF
|
||||
comment = comment-start-symbol *non-eol
|
||||
|
||||
;; Key-Value pairs
|
||||
|
||||
keyval-sep = ws %x3D ws ; =
|
||||
keyval = key keyval-sep val
|
||||
|
||||
key = unquoted-key / quoted-key
|
||||
unquoted-key = 1*( ALPHA / DIGIT / %x2D / %x5F ) ; A-Z / a-z / 0-9 / - / _
|
||||
quoted-key = quotation-mark 1*basic-char quotation-mark ; See Basic Strings
|
||||
|
||||
val = integer / float / string / boolean / date-time / array / inline-table
|
||||
|
||||
;; Table
|
||||
|
||||
table = std-table / array-table
|
||||
|
||||
;; Standard Table
|
||||
|
||||
std-table-open = %x5B ws ; [ Left square bracket
|
||||
std-table-close = ws %x5D ; ] Right square bracket
|
||||
table-key-sep = ws %x2E ws ; . Period
|
||||
|
||||
std-table = std-table-open key *( table-key-sep key) std-table-close
|
||||
|
||||
;; Array Table
|
||||
|
||||
array-table-open = %x5B.5B ws ; [[ Double left square bracket
|
||||
array-table-close = ws %x5D.5D ; ]] Double right square bracket
|
||||
|
||||
array-table = array-table-open key *( table-key-sep key) array-table-close
|
||||
|
||||
;; Integer
|
||||
|
||||
integer = [ minus / plus ] int
|
||||
minus = %x2D ; -
|
||||
plus = %x2B ; +
|
||||
digit1-9 = %x31-39 ; 1-9
|
||||
underscore = %x5F ; _
|
||||
int = DIGIT / digit1-9 1*( DIGIT / underscore DIGIT )
|
||||
|
||||
;; Float
|
||||
|
||||
float = integer ( frac / frac exp / exp )
|
||||
zero-prefixable-int = DIGIT *( DIGIT / underscore DIGIT )
|
||||
frac = decimal-point zero-prefixable-int
|
||||
decimal-point = %x2E ; .
|
||||
exp = e integer
|
||||
e = %x65 / %x45 ; e E
|
||||
|
||||
;; String
|
||||
|
||||
string = basic-string / ml-basic-string / literal-string / ml-literal-string
|
||||
|
||||
;; Basic String
|
||||
|
||||
basic-string = quotation-mark *basic-char quotation-mark
|
||||
|
||||
quotation-mark = %x22 ; "
|
||||
|
||||
basic-char = basic-unescaped / escaped
|
||||
escaped = escape ( %x22 / ; " quotation mark U+0022
|
||||
%x5C / ; \ reverse solidus U+005C
|
||||
%x2F / ; / solidus U+002F
|
||||
%x62 / ; b backspace U+0008
|
||||
%x66 / ; f form feed U+000C
|
||||
%x6E / ; n line feed U+000A
|
||||
%x72 / ; r carriage return U+000D
|
||||
%x74 / ; t tab U+0009
|
||||
%x75 4HEXDIG / ; uXXXX U+XXXX
|
||||
%x55 8HEXDIG ) ; UXXXXXXXX U+XXXXXXXX
|
||||
|
||||
basic-unescaped = %x20-21 / %x23-5B / %x5D-10FFFF
|
||||
|
||||
escape = %x5C ; \
|
||||
|
||||
;; Multiline Basic String
|
||||
|
||||
ml-basic-string-delim = quotation-mark quotation-mark quotation-mark
|
||||
ml-basic-string = ml-basic-string-delim ml-basic-body ml-basic-string-delim
|
||||
ml-basic-body = *( ml-basic-char / newline / ( escape newline ))
|
||||
|
||||
ml-basic-char = ml-basic-unescaped / escaped
|
||||
ml-basic-unescaped = %x20-5B / %x5D-10FFFF
|
||||
|
||||
;; Literal String
|
||||
|
||||
literal-string = apostraphe *literal-char apostraphe
|
||||
|
||||
apostraphe = %x27 ; ' Apostrophe
|
||||
|
||||
literal-char = %x09 / %x20-26 / %x28-10FFFF
|
||||
|
||||
;; Multiline Literal String
|
||||
|
||||
ml-literal-string-delim = apostraphe apostraphe apostraphe
|
||||
ml-literal-string = ml-literal-string-delim ml-literal-body ml-literal-string-delim
|
||||
|
||||
ml-literal-body = *( ml-literal-char / newline )
|
||||
ml-literal-char = %x09 / %x20-10FFFF
|
||||
|
||||
;; Boolean
|
||||
|
||||
boolean = true / false
|
||||
true = %x74.72.75.65 ; true
|
||||
false = %x66.61.6C.73.65 ; false
|
||||
|
||||
;; Datetime (as defined in RFC 3339)
|
||||
|
||||
date-fullyear = 4DIGIT
|
||||
date-month = 2DIGIT ; 01-12
|
||||
date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on month/year
|
||||
time-hour = 2DIGIT ; 00-23
|
||||
time-minute = 2DIGIT ; 00-59
|
||||
time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap second rules
|
||||
time-secfrac = "." 1*DIGIT
|
||||
time-numoffset = ( "+" / "-" ) time-hour ":" time-minute
|
||||
time-offset = "Z" / time-numoffset
|
||||
|
||||
partial-time = time-hour ":" time-minute ":" time-second [time-secfrac]
|
||||
full-date = date-fullyear "-" date-month "-" date-mday
|
||||
full-time = partial-time time-offset
|
||||
|
||||
date-time = full-date "T" full-time
|
||||
|
||||
;; Array
|
||||
|
||||
array-open = %x5B ws ; [
|
||||
array-close = ws %x5D ; ]
|
||||
|
||||
array = array-open array-values array-close
|
||||
|
||||
array-values = [ val [ array-sep ] [ ( comment newlines) / newlines ] /
|
||||
val array-sep [ ( comment newlines) / newlines ] array-values ]
|
||||
|
||||
array-sep = ws %x2C ws ; , Comma
|
||||
|
||||
;; Inline Table
|
||||
|
||||
inline-table-open = %x7B ws ; {
|
||||
inline-table-close = ws %x7D ; }
|
||||
inline-table-sep = ws %x2C ws ; , Comma
|
||||
|
||||
inline-table = inline-table-open inline-table-keyvals inline-table-close
|
||||
|
||||
inline-table-keyvals = [ inline-table-keyvals-non-empty ]
|
||||
inline-table-keyvals-non-empty = key keyval-sep val /
|
||||
key keyval-sep val inline-table-sep inline-table-keyvals-non-empty
|
||||
|
||||
;; Built-in ABNF terms, reproduced here for clarity
|
||||
|
||||
; ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
|
||||
; DIGIT = %x30-39 ; 0-9
|
||||
; HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
|
||||
@@ -1,707 +0,0 @@
|
||||
Inductive day : Type :=
|
||||
| monday : day
|
||||
| tuesday : day
|
||||
| wednesday : day
|
||||
| thursday : day
|
||||
| friday : day
|
||||
| saturday : day
|
||||
| sunday : day.
|
||||
|
||||
Definition next_weekday (d:day) : day :=
|
||||
match d with
|
||||
| monday => tuesday
|
||||
| tuesday => wednesday
|
||||
| wednesday => thursday
|
||||
| thursday => friday
|
||||
| friday => monday
|
||||
| saturday => monday
|
||||
| sunday => monday
|
||||
end.
|
||||
|
||||
Example test_next_weekday:
|
||||
(next_weekday (next_weekday saturday)) = tuesday.
|
||||
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Inductive bool : Type :=
|
||||
| true : bool
|
||||
| false : bool.
|
||||
|
||||
Definition negb (b:bool) : bool :=
|
||||
match b with
|
||||
| true => false
|
||||
| false => true
|
||||
end.
|
||||
|
||||
Definition andb (b1:bool) (b2:bool) : bool :=
|
||||
match b1 with
|
||||
| true => b2
|
||||
| false => false
|
||||
end.
|
||||
|
||||
Definition orb (b1:bool) (b2:bool) : bool :=
|
||||
match b1 with
|
||||
| true => true
|
||||
| false => b2
|
||||
end.
|
||||
|
||||
Example test_orb1: (orb true false) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Example test_orb2: (orb false false) = false.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Example test_orb3: (orb false true) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Example test_orb4: (orb true true) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Definition nandb (b1: bool) (b2:bool) : bool :=
|
||||
match b1 with
|
||||
| true => match b2 with
|
||||
| false => true
|
||||
| true => false
|
||||
end
|
||||
| false => true
|
||||
end.
|
||||
|
||||
Example test_nandb1: (nandb true false) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_nandb2: (nandb false false) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_nandb3: (nandb false true) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_nandb4: (nandb true true) = false.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Definition andb3 (b1: bool) (b2:bool) (b3:bool) : bool :=
|
||||
match b1 with
|
||||
| false => false
|
||||
| true => match b2 with
|
||||
| false => false
|
||||
| true => b3
|
||||
end
|
||||
end.
|
||||
|
||||
Example test_andb31: (andb3 true true true) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_andb32: (andb3 false true true) = false.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_andb33: (andb3 true false true) = false.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_andb34: (andb3 true true false) = false.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Module Playground1.
|
||||
|
||||
Inductive nat : Type :=
|
||||
| O : nat
|
||||
| S : nat -> nat.
|
||||
|
||||
Definition pred (n : nat) : nat :=
|
||||
match n with
|
||||
| O => O
|
||||
| S n' => n'
|
||||
end.
|
||||
|
||||
Definition minustwo (n : nat) : nat :=
|
||||
match n with
|
||||
| O => O
|
||||
| S O => O
|
||||
| S (S n') => n'
|
||||
end.
|
||||
|
||||
Fixpoint evenb (n : nat) : bool :=
|
||||
match n with
|
||||
| O => true
|
||||
| S O => false
|
||||
| S (S n') => evenb n'
|
||||
end.
|
||||
|
||||
Definition oddb (n : nat) : bool := negb (evenb n).
|
||||
|
||||
Example test_oddb1: (oddb (S O)) = true.
|
||||
Proof. reflexivity. Qed.
|
||||
Example test_oddb2: (oddb (S (S (S (S O))))) = false.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Fixpoint plus (n : nat) (m : nat) : nat :=
|
||||
match n with
|
||||
| O => m
|
||||
| S n' => S (plus n' m)
|
||||
end.
|
||||
|
||||
Fixpoint mult (n m : nat) : nat :=
|
||||
match n with
|
||||
| O => O
|
||||
| S n' => plus m (mult n' m)
|
||||
end.
|
||||
|
||||
Fixpoint minus (n m : nat) : nat :=
|
||||
match n, m with
|
||||
| O, _ => n
|
||||
| S n', O => S n'
|
||||
| S n', S m' => minus n' m'
|
||||
end.
|
||||
|
||||
Fixpoint exp (base power : nat) : nat :=
|
||||
match power with
|
||||
| O => S O
|
||||
| S p => mult base (exp base p)
|
||||
end.
|
||||
|
||||
Fixpoint factorial (n : nat) : nat :=
|
||||
match n with
|
||||
| O => S O
|
||||
| S n' => mult n (factorial n')
|
||||
end.
|
||||
|
||||
Example test_factorial1: (factorial (S (S (S O)))) = (S (S (S (S (S (S O)))))).
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.
|
||||
Notation "x - y" := (minus x y) (at level 50, left associativity) : nat_scope.
|
||||
Notation "x * y" := (mult x y) (at level 40, left associativity) : nat_scope.
|
||||
|
||||
Fixpoint beq_nat (n m : nat) : bool :=
|
||||
match n with
|
||||
| O => match m with
|
||||
| O => true
|
||||
| S m' => false
|
||||
end
|
||||
| S n' => match m with
|
||||
| O => false
|
||||
| S m' => beq_nat n' m'
|
||||
end
|
||||
end.
|
||||
|
||||
Fixpoint ble_nat (n m : nat) : bool :=
|
||||
match n with
|
||||
| O => true
|
||||
| S n' =>
|
||||
match m with
|
||||
| O => false
|
||||
| S m' => ble_nat n' m'
|
||||
end
|
||||
end.
|
||||
|
||||
Example test_ble_nat1: (ble_nat (S (S O)) (S (S O))) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_ble_nat2: (ble_nat (S (S O)) (S (S (S (S O))))) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_ble_nat3: (ble_nat (S (S (S (S O)))) (S (S O))) = false.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Definition blt_nat (n m : nat) : bool :=
|
||||
(andb (negb (beq_nat n m)) (ble_nat n m)).
|
||||
|
||||
Example test_blt_nat1: (blt_nat (S (S O)) (S (S O))) = false.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_blt_nat3: (blt_nat (S (S (S (S O)))) (S (S O))) = false.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
Example test_blt_nat2 : (blt_nat (S (S O)) (S (S (S (S O))))) = true.
|
||||
Proof. simpl. reflexivity. Qed.
|
||||
|
||||
Theorem plus_O_n : forall n : nat, O + n = n.
|
||||
Proof.
|
||||
simpl. reflexivity. Qed.
|
||||
|
||||
Theorem plus_O_n' : forall n : nat, O + n = n.
|
||||
Proof.
|
||||
reflexivity. Qed.
|
||||
|
||||
Theorem plus_O_n'' : forall n : nat, O + n = n.
|
||||
Proof.
|
||||
intros n. reflexivity. Qed.
|
||||
|
||||
Theorem plus_1_1 : forall n : nat, (S O) + n = S n.
|
||||
Proof.
|
||||
intros n. reflexivity. Qed.
|
||||
|
||||
Theorem mult_0_1: forall n : nat, O * n = O.
|
||||
Proof.
|
||||
intros n. reflexivity. Qed.
|
||||
|
||||
Theorem plus_id_example : forall n m:nat,
|
||||
n = m -> n + n = m + m.
|
||||
Proof.
|
||||
intros n m.
|
||||
intros H.
|
||||
rewrite -> H.
|
||||
reflexivity. Qed.
|
||||
|
||||
Theorem plus_id_exercise : forall n m o: nat,
|
||||
n = m -> m = o -> n + m = m + o.
|
||||
Proof.
|
||||
intros n m o.
|
||||
intros H.
|
||||
intros H'.
|
||||
rewrite -> H.
|
||||
rewrite <- H'.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem mult_0_plus : forall n m : nat,
|
||||
(O + n) * m = n * m.
|
||||
Proof.
|
||||
intros n m.
|
||||
rewrite -> plus_O_n.
|
||||
reflexivity. Qed.
|
||||
|
||||
Theorem mult_1_plus : forall n m: nat,
|
||||
((S O) + n) * m = m + (n * m).
|
||||
Proof.
|
||||
intros n m.
|
||||
rewrite -> plus_1_1.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem mult_1 : forall n : nat,
|
||||
n * (S O) = n.
|
||||
Proof.
|
||||
intros n.
|
||||
induction n as [| n'].
|
||||
reflexivity.
|
||||
simpl.
|
||||
rewrite -> IHn'.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem plus_1_neq_0 : forall n : nat,
|
||||
beq_nat (n + (S O)) O = false.
|
||||
Proof.
|
||||
intros n.
|
||||
destruct n as [| n'].
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem zero_nbeq_plus_1 : forall n : nat,
|
||||
beq_nat O (n + (S O)) = false.
|
||||
Proof.
|
||||
intros n.
|
||||
destruct n.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Require String. Open Scope string_scope.
|
||||
|
||||
Ltac move_to_top x :=
|
||||
match reverse goal with
|
||||
| H : _ |- _ => try move x after H
|
||||
end.
|
||||
|
||||
Tactic Notation "assert_eq" ident(x) constr(v) :=
|
||||
let H := fresh in
|
||||
assert (x = v) as H by reflexivity;
|
||||
clear H.
|
||||
|
||||
Tactic Notation "Case_aux" ident(x) constr(name) :=
|
||||
first [
|
||||
set (x := name); move_to_top x
|
||||
| assert_eq x name; move_to_top x
|
||||
| fail 1 "because we are working on a different case" ].
|
||||
|
||||
Ltac Case name := Case_aux Case name.
|
||||
Ltac SCase name := Case_aux SCase name.
|
||||
Ltac SSCase name := Case_aux SSCase name.
|
||||
Ltac SSSCase name := Case_aux SSSCase name.
|
||||
Ltac SSSSCase name := Case_aux SSSSCase name.
|
||||
Ltac SSSSSCase name := Case_aux SSSSSCase name.
|
||||
Ltac SSSSSSCase name := Case_aux SSSSSSCase name.
|
||||
Ltac SSSSSSSCase name := Case_aux SSSSSSSCase name.
|
||||
|
||||
Theorem andb_true_elim1 : forall b c : bool,
|
||||
andb b c = true -> b = true.
|
||||
Proof.
|
||||
intros b c H.
|
||||
destruct b.
|
||||
Case "b = true".
|
||||
reflexivity.
|
||||
Case "b = false".
|
||||
rewrite <- H. reflexivity. Qed.
|
||||
|
||||
Theorem plus_0_r : forall n : nat, n + O = n.
|
||||
Proof.
|
||||
intros n. induction n as [| n'].
|
||||
Case "n = 0". reflexivity.
|
||||
Case "n = S n'". simpl. rewrite -> IHn'. reflexivity. Qed.
|
||||
|
||||
Theorem minus_diag : forall n,
|
||||
minus n n = O.
|
||||
Proof.
|
||||
intros n. induction n as [| n'].
|
||||
Case "n = 0".
|
||||
simpl. reflexivity.
|
||||
Case "n = S n'".
|
||||
simpl. rewrite -> IHn'. reflexivity. Qed.
|
||||
|
||||
|
||||
Theorem mult_0_r : forall n:nat,
|
||||
n * O = O.
|
||||
Proof.
|
||||
intros n. induction n as [| n'].
|
||||
Case "n = 0".
|
||||
reflexivity.
|
||||
Case "n = S n'".
|
||||
simpl. rewrite -> IHn'. reflexivity. Qed.
|
||||
|
||||
Theorem plus_n_Sm : forall n m : nat,
|
||||
S (n + m) = n + (S m).
|
||||
Proof.
|
||||
intros n m. induction n as [| n'].
|
||||
Case "n = 0".
|
||||
reflexivity.
|
||||
Case "n = S n'".
|
||||
simpl. rewrite -> IHn'. reflexivity. Qed.
|
||||
|
||||
Theorem plus_assoc : forall n m p : nat,
|
||||
n + (m + p) = (n + m) + p.
|
||||
Proof.
|
||||
intros n m p.
|
||||
induction n as [| n'].
|
||||
reflexivity.
|
||||
simpl.
|
||||
rewrite -> IHn'.
|
||||
reflexivity. Qed.
|
||||
|
||||
Theorem plus_distr : forall n m: nat, S (n + m) = n + (S m).
|
||||
Proof.
|
||||
intros n m. induction n as [| n'].
|
||||
Case "n = 0".
|
||||
reflexivity.
|
||||
Case "n = S n'".
|
||||
simpl. rewrite -> IHn'. reflexivity. Qed.
|
||||
|
||||
Theorem mult_distr : forall n m: nat, n * ((S O) + m) = n * (S m).
|
||||
Proof.
|
||||
intros n m.
|
||||
induction n as [| n'].
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem plus_comm : forall n m : nat,
|
||||
n + m = m + n.
|
||||
Proof.
|
||||
intros n m.
|
||||
induction n as [| n'].
|
||||
Case "n = 0".
|
||||
simpl.
|
||||
rewrite -> plus_0_r.
|
||||
reflexivity.
|
||||
Case "n = S n'".
|
||||
simpl.
|
||||
rewrite -> IHn'.
|
||||
rewrite -> plus_distr.
|
||||
reflexivity. Qed.
|
||||
|
||||
Fixpoint double (n:nat) :=
|
||||
match n with
|
||||
| O => O
|
||||
| S n' => S (S (double n'))
|
||||
end.
|
||||
|
||||
Lemma double_plus : forall n, double n = n + n.
|
||||
Proof.
|
||||
intros n. induction n as [| n'].
|
||||
Case "n = 0".
|
||||
reflexivity.
|
||||
Case "n = S n'".
|
||||
simpl. rewrite -> IHn'.
|
||||
rewrite -> plus_distr. reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem beq_nat_refl : forall n : nat,
|
||||
true = beq_nat n n.
|
||||
Proof.
|
||||
intros n. induction n as [| n'].
|
||||
Case "n = 0".
|
||||
reflexivity.
|
||||
Case "n = S n".
|
||||
simpl. rewrite <- IHn'.
|
||||
reflexivity. Qed.
|
||||
|
||||
Theorem plus_rearrange: forall n m p q : nat,
|
||||
(n + m) + (p + q) = (m + n) + (p + q).
|
||||
Proof.
|
||||
intros n m p q.
|
||||
assert(H: n + m = m + n).
|
||||
Case "Proof by assertion".
|
||||
rewrite -> plus_comm. reflexivity.
|
||||
rewrite -> H. reflexivity. Qed.
|
||||
|
||||
Theorem plus_swap : forall n m p: nat,
|
||||
n + (m + p) = m + (n + p).
|
||||
Proof.
|
||||
intros n m p.
|
||||
rewrite -> plus_assoc.
|
||||
assert(H: m + (n + p) = (m + n) + p).
|
||||
rewrite -> plus_assoc.
|
||||
reflexivity.
|
||||
rewrite -> H.
|
||||
assert(H2: m + n = n + m).
|
||||
rewrite -> plus_comm.
|
||||
reflexivity.
|
||||
rewrite -> H2.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem plus_swap' : forall n m p: nat,
|
||||
n + (m + p) = m + (n + p).
|
||||
Proof.
|
||||
intros n m p.
|
||||
rewrite -> plus_assoc.
|
||||
assert(H: m + (n + p) = (m + n) + p).
|
||||
rewrite -> plus_assoc.
|
||||
reflexivity.
|
||||
rewrite -> H.
|
||||
replace (m + n) with (n + m).
|
||||
rewrite -> plus_comm.
|
||||
reflexivity.
|
||||
rewrite -> plus_comm.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem mult_1_distr: forall m n: nat,
|
||||
n * ((S O) + m) = n * (S O) + n * m.
|
||||
Proof.
|
||||
intros n m.
|
||||
rewrite -> mult_1.
|
||||
rewrite -> plus_1_1.
|
||||
simpl.
|
||||
induction m as [|m'].
|
||||
simpl.
|
||||
reflexivity.
|
||||
simpl.
|
||||
rewrite -> plus_swap.
|
||||
rewrite <- IHm'.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem mult_comm: forall m n : nat,
|
||||
m * n = n * m.
|
||||
Proof.
|
||||
intros m n.
|
||||
induction n as [| n'].
|
||||
Case "n = 0".
|
||||
simpl.
|
||||
rewrite -> mult_0_r.
|
||||
reflexivity.
|
||||
Case "n = S n'".
|
||||
simpl.
|
||||
rewrite <- mult_distr.
|
||||
rewrite -> mult_1_distr.
|
||||
rewrite -> mult_1.
|
||||
rewrite -> IHn'.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem evenb_next : forall n : nat,
|
||||
evenb n = evenb (S (S n)).
|
||||
Proof.
|
||||
intros n.
|
||||
Admitted.
|
||||
|
||||
Theorem negb_negb : forall n : bool,
|
||||
n = negb (negb n).
|
||||
Proof.
|
||||
intros n.
|
||||
destruct n.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem evenb_n_oddb_Sn : forall n : nat,
|
||||
evenb n = negb (evenb (S n)).
|
||||
Proof.
|
||||
intros n.
|
||||
induction n as [|n'].
|
||||
reflexivity.
|
||||
assert(H: evenb n' = evenb (S (S n'))).
|
||||
reflexivity.
|
||||
rewrite <- H.
|
||||
rewrite -> IHn'.
|
||||
rewrite <- negb_negb.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(*Fixpoint bad (n : nat) : bool :=
|
||||
match n with
|
||||
| O => true
|
||||
| S O => bad (S n)
|
||||
| S (S n') => bad n'
|
||||
end.*)
|
||||
|
||||
Theorem ble_nat_refl : forall n:nat,
|
||||
true = ble_nat n n.
|
||||
Proof.
|
||||
intros n.
|
||||
induction n as [|n'].
|
||||
Case "n = 0".
|
||||
reflexivity.
|
||||
Case "n = S n".
|
||||
simpl.
|
||||
rewrite <- IHn'.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem zero_nbeq_S : forall n: nat,
|
||||
beq_nat O (S n) = false.
|
||||
Proof.
|
||||
intros n.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem andb_false_r : forall b : bool,
|
||||
andb b false = false.
|
||||
Proof.
|
||||
intros b.
|
||||
destruct b.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem plus_ble_compat_1 : forall n m p : nat,
|
||||
ble_nat n m = true -> ble_nat (p + n) (p + m) = true.
|
||||
Proof.
|
||||
intros n m p.
|
||||
intros H.
|
||||
induction p.
|
||||
Case "p = 0".
|
||||
simpl.
|
||||
rewrite -> H.
|
||||
reflexivity.
|
||||
Case "p = S p'".
|
||||
simpl.
|
||||
rewrite -> IHp.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem S_nbeq_0 : forall n:nat,
|
||||
beq_nat (S n) O = false.
|
||||
Proof.
|
||||
intros n.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem mult_1_1 : forall n:nat, (S O) * n = n.
|
||||
Proof.
|
||||
intros n.
|
||||
simpl.
|
||||
rewrite -> plus_0_r.
|
||||
reflexivity. Qed.
|
||||
|
||||
Theorem all3_spec : forall b c : bool,
|
||||
orb (andb b c)
|
||||
(orb (negb b)
|
||||
(negb c))
|
||||
= true.
|
||||
Proof.
|
||||
intros b c.
|
||||
destruct b.
|
||||
destruct c.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma mult_plus_1 : forall n m : nat,
|
||||
S(m + n) = m + (S n).
|
||||
Proof.
|
||||
intros n m.
|
||||
induction m.
|
||||
reflexivity.
|
||||
simpl.
|
||||
rewrite -> IHm.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem mult_mult : forall n m : nat,
|
||||
n * (S m) = n * m + n.
|
||||
Proof.
|
||||
intros n m.
|
||||
induction n.
|
||||
reflexivity.
|
||||
simpl.
|
||||
rewrite -> IHn.
|
||||
rewrite -> plus_assoc.
|
||||
rewrite -> mult_plus_1.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem mult_plus_distr_r : forall n m p:nat,
|
||||
(n + m) * p = (n * p) + (m * p).
|
||||
Proof.
|
||||
intros n m p.
|
||||
induction p.
|
||||
rewrite -> mult_0_r.
|
||||
rewrite -> mult_0_r.
|
||||
rewrite -> mult_0_r.
|
||||
reflexivity.
|
||||
rewrite -> mult_mult.
|
||||
rewrite -> mult_mult.
|
||||
rewrite -> mult_mult.
|
||||
rewrite -> IHp.
|
||||
assert(H1: ((n * p) + n) + (m * p + m) = (n * p) + (n + (m * p + m))).
|
||||
rewrite <- plus_assoc.
|
||||
reflexivity.
|
||||
rewrite -> H1.
|
||||
assert(H2: (n + (m * p + m)) = (m * p + (n + m))).
|
||||
rewrite -> plus_swap.
|
||||
reflexivity.
|
||||
rewrite -> H2.
|
||||
assert(H3: (n * p) + (m * p + (n + m)) = ((n * p ) + (m * p)) + (n + m)).
|
||||
rewrite -> plus_assoc.
|
||||
reflexivity.
|
||||
rewrite -> H3.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem mult_assoc : forall n m p : nat,
|
||||
n * (m * p) = (n * m) * p.
|
||||
Proof.
|
||||
intros n m p.
|
||||
induction n.
|
||||
simpl.
|
||||
reflexivity.
|
||||
simpl.
|
||||
rewrite -> mult_plus_distr_r.
|
||||
rewrite -> IHn.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Inductive bin : Type :=
|
||||
| BO : bin
|
||||
| D : bin -> bin
|
||||
| M : bin -> bin.
|
||||
|
||||
Fixpoint incbin (n : bin) : bin :=
|
||||
match n with
|
||||
| BO => M (BO)
|
||||
| D n' => M n'
|
||||
| M n' => D (incbin n')
|
||||
end.
|
||||
|
||||
Fixpoint bin2un (n : bin) : nat :=
|
||||
match n with
|
||||
| BO => O
|
||||
| D n' => double (bin2un n')
|
||||
| M n' => S (double (bin2un n'))
|
||||
end.
|
||||
|
||||
Theorem bin_comm : forall n : bin,
|
||||
bin2un(incbin n) = S (bin2un n).
|
||||
Proof.
|
||||
intros n.
|
||||
induction n.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
simpl.
|
||||
rewrite -> IHn.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
End Playground1.
|
||||
85
samples/Coq/Computation.v
Normal file
85
samples/Coq/Computation.v
Normal file
@@ -0,0 +1,85 @@
|
||||
(** The definition of computations, used to represent interactive programs. *)
|
||||
Require Import Coq.NArith.NArith.
|
||||
Require Import ListString.All.
|
||||
|
||||
Local Open Scope type.
|
||||
|
||||
(** System calls. *)
|
||||
Module Command.
|
||||
Inductive t :=
|
||||
| AskCard
|
||||
| AskPIN
|
||||
| CheckPIN (pin : N)
|
||||
| AskAmount
|
||||
| CheckAmount (amount : N)
|
||||
| GiveCard
|
||||
| GiveAmount (amount : N)
|
||||
| ShowError (message : LString.t).
|
||||
|
||||
(** The type of an answer for a command depends on the value of the command. *)
|
||||
Definition answer (command : t) : Type :=
|
||||
match command with
|
||||
| AskCard => bool (* If the given card seems valid. *)
|
||||
| AskPIN => option N (* A number or cancellation. *)
|
||||
| CheckPIN _ => bool (* If the PIN number is valid. *)
|
||||
| AskAmount => option N (* A number or cancellation. *)
|
||||
| CheckAmount _ => bool (* If the amount can be withdrawn. *)
|
||||
| GiveCard => bool (* If the card was given. *)
|
||||
| GiveAmount _ => bool (* If the money was given. *)
|
||||
| ShowError _ => unit (* Show an error message. *)
|
||||
end.
|
||||
End Command.
|
||||
|
||||
(** Computations with I/Os. *)
|
||||
Module C.
|
||||
(** A computation can either does nothing, or do a system call and wait
|
||||
for the answer to run another computation. *)
|
||||
Inductive t : Type :=
|
||||
| Ret : t
|
||||
| Call : forall (command : Command.t), (Command.answer command -> t) -> t.
|
||||
Arguments Ret.
|
||||
Arguments Call _ _.
|
||||
|
||||
(** Some optional notations. *)
|
||||
Module Notations.
|
||||
(** A nicer notation for `Ret`. *)
|
||||
Definition ret : t :=
|
||||
Ret.
|
||||
|
||||
(** We define an explicit apply function so that Coq does not try to expand
|
||||
the notations everywhere. *)
|
||||
Definition apply {A B} (f : A -> B) (x : A) := f x.
|
||||
|
||||
(** System call. *)
|
||||
Notation "'call!' answer ':=' command 'in' X" :=
|
||||
(Call command (fun answer => X))
|
||||
(at level 200, answer ident, command at level 100, X at level 200).
|
||||
|
||||
(** System call with typed answer. *)
|
||||
Notation "'call!' answer : A ':=' command 'in' X" :=
|
||||
(Call command (fun (answer : A) => X))
|
||||
(at level 200, answer ident, command at level 100, A at level 200, X at level 200).
|
||||
|
||||
(** System call ignoring the answer. *)
|
||||
Notation "'do_call!' command 'in' X" :=
|
||||
(Call command (fun _ => X))
|
||||
(at level 200, command at level 100, X at level 200).
|
||||
|
||||
(** This notation is useful to compose computations which wait for a
|
||||
continuation. We do not have an explicit bind operator to simplify the
|
||||
language and the proofs. *)
|
||||
Notation "'let!' x ':=' X 'in' Y" :=
|
||||
(apply X (fun x => Y))
|
||||
(at level 200, x ident, X at level 100, Y at level 200).
|
||||
|
||||
(** Let with a typed answer. *)
|
||||
Notation "'let!' x : A ':=' X 'in' Y" :=
|
||||
(apply X (fun (x : A) => Y))
|
||||
(at level 200, x ident, X at level 100, A at level 200, Y at level 200).
|
||||
|
||||
(** Let ignoring the answer. *)
|
||||
Notation "'do!' X 'in' Y" :=
|
||||
(apply X (fun _ => Y))
|
||||
(at level 200, X at level 100, Y at level 200).
|
||||
End Notations.
|
||||
End C.
|
||||
@@ -1,290 +0,0 @@
|
||||
(** A development of Treesort on Heap trees. It has an average
|
||||
complexity of O(n.log n) but of O(n²) in the worst case (e.g. if
|
||||
the list is already sorted) *)
|
||||
|
||||
(* G. Huet 1-9-95 uses Multiset *)
|
||||
|
||||
Require Import List Multiset PermutSetoid Relations Sorting.
|
||||
|
||||
Section defs.
|
||||
|
||||
(** * Trees and heap trees *)
|
||||
|
||||
(** ** Definition of trees over an ordered set *)
|
||||
|
||||
Variable A : Type.
|
||||
Variable leA : relation A.
|
||||
Variable eqA : relation A.
|
||||
|
||||
Let gtA (x y:A) := ~ leA x y.
|
||||
|
||||
Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}.
|
||||
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
|
||||
Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
|
||||
Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
|
||||
Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.
|
||||
|
||||
Hint Resolve leA_refl.
|
||||
Hint Immediate eqA_dec leA_dec leA_antisym.
|
||||
|
||||
Let emptyBag := EmptyBag A.
|
||||
Let singletonBag := SingletonBag _ eqA_dec.
|
||||
|
||||
Inductive Tree :=
|
||||
| Tree_Leaf : Tree
|
||||
| Tree_Node : A -> Tree -> Tree -> Tree.
|
||||
|
||||
(** [a] is lower than a Tree [T] if [T] is a Leaf
|
||||
or [T] is a Node holding [b>a] *)
|
||||
|
||||
Definition leA_Tree (a:A) (t:Tree) :=
|
||||
match t with
|
||||
| Tree_Leaf => True
|
||||
| Tree_Node b T1 T2 => leA a b
|
||||
end.
|
||||
|
||||
Lemma leA_Tree_Leaf : forall a:A, leA_Tree a Tree_Leaf.
|
||||
Proof.
|
||||
simpl; auto with datatypes.
|
||||
Qed.
|
||||
|
||||
Lemma leA_Tree_Node :
|
||||
forall (a b:A) (G D:Tree), leA a b -> leA_Tree a (Tree_Node b G D).
|
||||
Proof.
|
||||
simpl; auto with datatypes.
|
||||
Qed.
|
||||
|
||||
|
||||
(** ** The heap property *)
|
||||
|
||||
Inductive is_heap : Tree -> Prop :=
|
||||
| nil_is_heap : is_heap Tree_Leaf
|
||||
| node_is_heap :
|
||||
forall (a:A) (T1 T2:Tree),
|
||||
leA_Tree a T1 ->
|
||||
leA_Tree a T2 ->
|
||||
is_heap T1 -> is_heap T2 -> is_heap (Tree_Node a T1 T2).
|
||||
|
||||
Lemma invert_heap :
|
||||
forall (a:A) (T1 T2:Tree),
|
||||
is_heap (Tree_Node a T1 T2) ->
|
||||
leA_Tree a T1 /\ leA_Tree a T2 /\ is_heap T1 /\ is_heap T2.
|
||||
Proof.
|
||||
intros; inversion H; auto with datatypes.
|
||||
Qed.
|
||||
|
||||
(* This lemma ought to be generated automatically by the Inversion tools *)
|
||||
Lemma is_heap_rect :
|
||||
forall P:Tree -> Type,
|
||||
P Tree_Leaf ->
|
||||
(forall (a:A) (T1 T2:Tree),
|
||||
leA_Tree a T1 ->
|
||||
leA_Tree a T2 ->
|
||||
is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
|
||||
forall T:Tree, is_heap T -> P T.
|
||||
Proof.
|
||||
simple induction T; auto with datatypes.
|
||||
intros a G PG D PD PN.
|
||||
elim (invert_heap a G D); auto with datatypes.
|
||||
intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
|
||||
apply X0; auto with datatypes.
|
||||
Qed.
|
||||
|
||||
(* This lemma ought to be generated automatically by the Inversion tools *)
|
||||
Lemma is_heap_rec :
|
||||
forall P:Tree -> Set,
|
||||
P Tree_Leaf ->
|
||||
(forall (a:A) (T1 T2:Tree),
|
||||
leA_Tree a T1 ->
|
||||
leA_Tree a T2 ->
|
||||
is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
|
||||
forall T:Tree, is_heap T -> P T.
|
||||
Proof.
|
||||
simple induction T; auto with datatypes.
|
||||
intros a G PG D PD PN.
|
||||
elim (invert_heap a G D); auto with datatypes.
|
||||
intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
|
||||
apply X; auto with datatypes.
|
||||
Qed.
|
||||
|
||||
Lemma low_trans :
|
||||
forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T.
|
||||
Proof.
|
||||
simple induction T; auto with datatypes.
|
||||
intros; simpl; apply leA_trans with b; auto with datatypes.
|
||||
Qed.
|
||||
|
||||
(** ** Merging two sorted lists *)
|
||||
|
||||
Inductive merge_lem (l1 l2:list A) : Type :=
|
||||
merge_exist :
|
||||
forall l:list A,
|
||||
Sorted leA l ->
|
||||
meq (list_contents _ eqA_dec l)
|
||||
(munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2)) ->
|
||||
(forall a, HdRel leA a l1 -> HdRel leA a l2 -> HdRel leA a l) ->
|
||||
merge_lem l1 l2.
|
||||
Require Import Morphisms.
|
||||
|
||||
Instance: Equivalence (@meq A).
|
||||
Proof. constructor; auto with datatypes. red. apply meq_trans. Defined.
|
||||
|
||||
Instance: Proper (@meq A ++> @meq _ ++> @meq _) (@munion A).
|
||||
Proof. intros x y H x' y' H'. now apply meq_congr. Qed.
|
||||
|
||||
Lemma merge :
|
||||
forall l1:list A, Sorted leA l1 ->
|
||||
forall l2:list A, Sorted leA l2 -> merge_lem l1 l2.
|
||||
Proof.
|
||||
fix 1; intros; destruct l1.
|
||||
apply merge_exist with l2; auto with datatypes.
|
||||
rename l1 into l.
|
||||
revert l2 H0. fix 1. intros.
|
||||
destruct l2 as [|a0 l0].
|
||||
apply merge_exist with (a :: l); simpl; auto with datatypes.
|
||||
elim (leA_dec a a0); intros.
|
||||
|
||||
(* 1 (leA a a0) *)
|
||||
apply Sorted_inv in H. destruct H.
|
||||
destruct (merge l H (a0 :: l0) H0).
|
||||
apply merge_exist with (a :: l1). clear merge merge0.
|
||||
auto using cons_sort, cons_leA with datatypes.
|
||||
simpl. rewrite m. now rewrite munion_ass.
|
||||
intros. apply cons_leA.
|
||||
apply (@HdRel_inv _ leA) with l; trivial with datatypes.
|
||||
|
||||
(* 2 (leA a0 a) *)
|
||||
apply Sorted_inv in H0. destruct H0.
|
||||
destruct (merge0 l0 H0). clear merge merge0.
|
||||
apply merge_exist with (a0 :: l1);
|
||||
auto using cons_sort, cons_leA with datatypes.
|
||||
simpl; rewrite m. simpl. setoid_rewrite munion_ass at 1. rewrite munion_comm.
|
||||
repeat rewrite munion_ass. setoid_rewrite munion_comm at 3. reflexivity.
|
||||
intros. apply cons_leA.
|
||||
apply (@HdRel_inv _ leA) with l0; trivial with datatypes.
|
||||
Qed.
|
||||
|
||||
(** ** From trees to multisets *)
|
||||
|
||||
(** contents of a tree as a multiset *)
|
||||
|
||||
(** Nota Bene : In what follows the definition of SingletonBag
|
||||
in not used. Actually, we could just take as postulate:
|
||||
[Parameter SingletonBag : A->multiset]. *)
|
||||
|
||||
Fixpoint contents (t:Tree) : multiset A :=
|
||||
match t with
|
||||
| Tree_Leaf => emptyBag
|
||||
| Tree_Node a t1 t2 =>
|
||||
munion (contents t1) (munion (contents t2) (singletonBag a))
|
||||
end.
|
||||
|
||||
|
||||
(** equivalence of two trees is equality of corresponding multisets *)
|
||||
Definition equiv_Tree (t1 t2:Tree) := meq (contents t1) (contents t2).
|
||||
|
||||
|
||||
|
||||
(** * From lists to sorted lists *)
|
||||
|
||||
(** ** Specification of heap insertion *)
|
||||
|
||||
Inductive insert_spec (a:A) (T:Tree) : Type :=
|
||||
insert_exist :
|
||||
forall T1:Tree,
|
||||
is_heap T1 ->
|
||||
meq (contents T1) (munion (contents T) (singletonBag a)) ->
|
||||
(forall b:A, leA b a -> leA_Tree b T -> leA_Tree b T1) ->
|
||||
insert_spec a T.
|
||||
|
||||
|
||||
Lemma insert : forall T:Tree, is_heap T -> forall a:A, insert_spec a T.
|
||||
Proof.
|
||||
simple induction 1; intros.
|
||||
apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf);
|
||||
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
|
||||
simpl; unfold meq, munion; auto using node_is_heap with datatypes.
|
||||
elim (leA_dec a a0); intros.
|
||||
elim (X a0); intros.
|
||||
apply insert_exist with (Tree_Node a T2 T0);
|
||||
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
|
||||
simpl; apply treesort_twist1; trivial with datatypes.
|
||||
elim (X a); intros T3 HeapT3 ConT3 LeA.
|
||||
apply insert_exist with (Tree_Node a0 T2 T3);
|
||||
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
|
||||
apply node_is_heap; auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
|
||||
apply low_trans with a; auto with datatypes.
|
||||
apply LeA; auto with datatypes.
|
||||
apply low_trans with a; auto with datatypes.
|
||||
simpl; apply treesort_twist2; trivial with datatypes.
|
||||
Qed.
|
||||
|
||||
|
||||
(** ** Building a heap from a list *)
|
||||
|
||||
Inductive build_heap (l:list A) : Type :=
|
||||
heap_exist :
|
||||
forall T:Tree,
|
||||
is_heap T ->
|
||||
meq (list_contents _ eqA_dec l) (contents T) -> build_heap l.
|
||||
|
||||
Lemma list_to_heap : forall l:list A, build_heap l.
|
||||
Proof.
|
||||
simple induction l.
|
||||
apply (heap_exist nil Tree_Leaf); auto with datatypes.
|
||||
simpl; unfold meq; exact nil_is_heap.
|
||||
simple induction 1.
|
||||
intros T i m; elim (insert T i a).
|
||||
intros; apply heap_exist with T1; simpl; auto with datatypes.
|
||||
apply meq_trans with (munion (contents T) (singletonBag a)).
|
||||
apply meq_trans with (munion (singletonBag a) (contents T)).
|
||||
apply meq_right; trivial with datatypes.
|
||||
apply munion_comm.
|
||||
apply meq_sym; trivial with datatypes.
|
||||
Qed.
|
||||
|
||||
|
||||
(** ** Building the sorted list *)
|
||||
|
||||
Inductive flat_spec (T:Tree) : Type :=
|
||||
flat_exist :
|
||||
forall l:list A,
|
||||
Sorted leA l ->
|
||||
(forall a:A, leA_Tree a T -> HdRel leA a l) ->
|
||||
meq (contents T) (list_contents _ eqA_dec l) -> flat_spec T.
|
||||
|
||||
Lemma heap_to_list : forall T:Tree, is_heap T -> flat_spec T.
|
||||
Proof.
|
||||
intros T h; elim h; intros.
|
||||
apply flat_exist with (nil (A:=A)); auto with datatypes.
|
||||
elim X; intros l1 s1 i1 m1; elim X0; intros l2 s2 i2 m2.
|
||||
elim (merge _ s1 _ s2); intros.
|
||||
apply flat_exist with (a :: l); simpl; auto with datatypes.
|
||||
apply meq_trans with
|
||||
(munion (list_contents _ eqA_dec l1)
|
||||
(munion (list_contents _ eqA_dec l2) (singletonBag a))).
|
||||
apply meq_congr; auto with datatypes.
|
||||
apply meq_trans with
|
||||
(munion (singletonBag a)
|
||||
(munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2))).
|
||||
apply munion_rotate.
|
||||
apply meq_right; apply meq_sym; trivial with datatypes.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Specification of treesort *)
|
||||
|
||||
Theorem treesort :
|
||||
forall l:list A,
|
||||
{m : list A | Sorted leA m & permutation _ eqA_dec l m}.
|
||||
Proof.
|
||||
intro l; unfold permutation.
|
||||
elim (list_to_heap l).
|
||||
intros.
|
||||
elim (heap_to_list T); auto with datatypes.
|
||||
intros.
|
||||
exists l0; auto with datatypes.
|
||||
apply meq_trans with (contents T); trivial with datatypes.
|
||||
Qed.
|
||||
|
||||
End defs.
|
||||
5944
samples/Coq/JsCorrectness.v
Normal file
5944
samples/Coq/JsCorrectness.v
Normal file
File diff suppressed because it is too large
Load Diff
249
samples/Coq/JsInterpreterExtraction.v
Normal file
249
samples/Coq/JsInterpreterExtraction.v
Normal file
@@ -0,0 +1,249 @@
|
||||
Set Implicit Arguments.
|
||||
Require Import JsSyntax JsInterpreterMonads JsInterpreter JsInit.
|
||||
Require Import LibFix LibList.
|
||||
|
||||
Require Export Shared.
|
||||
Require Export LibTactics LibLogic LibReflect LibList
|
||||
LibOperation LibStruct LibNat LibEpsilon LibFunc LibHeap.
|
||||
Require Flocq.Appli.Fappli_IEEE Flocq.Appli.Fappli_IEEE_bits.
|
||||
|
||||
|
||||
|
||||
(* Here stands some commands to extract relatively correctly the interpreter to Ocaml. *)
|
||||
Extraction Language Ocaml.
|
||||
|
||||
Require Import ExtrOcamlBasic.
|
||||
Require Import ExtrOcamlNatInt.
|
||||
Require Import ExtrOcamlString.
|
||||
|
||||
(* Optimal fixpoint. *)
|
||||
Extraction Inline FixFun3 FixFun3Mod FixFun4 FixFun4Mod FixFunMod curry3 uncurry3 curry4 uncurry4.
|
||||
(* As classical logic statements are now unused, they should not be extracted
|
||||
(otherwise, useless errors will be launched). *)
|
||||
Extraction Inline epsilon epsilon_def classicT arbitrary indefinite_description Inhab_witness Fix isTrue.
|
||||
|
||||
(**************************************************************)
|
||||
(** ** Numerical values *)
|
||||
|
||||
(* number *)
|
||||
|
||||
Extract Inductive positive => float
|
||||
[ "(fun p -> 1. +. (2. *. p))"
|
||||
"(fun p -> 2. *. p)"
|
||||
"1." ]
|
||||
"(fun f2p1 f2p f1 p ->
|
||||
if p <= 1. then f1 () else if mod_float p 2. = 0. then f2p (floor (p /. 2.)) else f2p1 (floor (p /. 2.)))".
|
||||
|
||||
Extract Inductive Z => float [ "0." "" "(~-.)" ]
|
||||
"(fun f0 fp fn z -> if z=0. then f0 () else if z>0. then fp z else fn (~-. z))".
|
||||
|
||||
Extract Inductive N => float [ "0." "" ]
|
||||
"(fun f0 fp n -> if n=0. then f0 () else fp n)".
|
||||
|
||||
Extract Constant Z.add => "(+.)".
|
||||
Extract Constant Z.succ => "(+.) 1.".
|
||||
Extract Constant Z.pred => "(fun x -> x -. 1.)".
|
||||
Extract Constant Z.sub => "(-.)".
|
||||
Extract Constant Z.mul => "( *. )".
|
||||
Extract Constant Z.opp => "(~-.)".
|
||||
Extract Constant Z.abs => "abs_float".
|
||||
Extract Constant Z.min => "min".
|
||||
Extract Constant Z.max => "max".
|
||||
Extract Constant Z.compare =>
|
||||
"fun x y -> if x=y then Eq else if x<y then Lt else Gt".
|
||||
|
||||
Extract Constant Pos.add => "(+.)".
|
||||
Extract Constant Pos.succ => "(+.) 1.".
|
||||
Extract Constant Pos.pred => "(fun x -> x -. 1.)".
|
||||
Extract Constant Pos.sub => "(-.)".
|
||||
Extract Constant Pos.mul => "( *. )".
|
||||
Extract Constant Pos.min => "min".
|
||||
Extract Constant Pos.max => "max".
|
||||
Extract Constant Pos.compare =>
|
||||
"fun x y -> if x=y then Eq else if x<y then Lt else Gt".
|
||||
Extract Constant Pos.compare_cont =>
|
||||
"fun x y c -> if x=y then c else if x<y then Lt else Gt".
|
||||
|
||||
Extract Constant N.add => "(+.)".
|
||||
Extract Constant N.succ => "(+.) 1.".
|
||||
Extract Constant N.pred => "(fun x -> x -. 1.)".
|
||||
Extract Constant N.sub => "(-.)".
|
||||
Extract Constant N.mul => "( *. )".
|
||||
Extract Constant N.min => "min".
|
||||
Extract Constant N.max => "max".
|
||||
Extract Constant N.div => "(fun x y -> if x = 0. then 0. else floor (x /. y))".
|
||||
Extract Constant N.modulo => "mod_float".
|
||||
Extract Constant N.compare =>
|
||||
"fun x y -> if x=y then Eq else if x<y then Lt else Gt".
|
||||
|
||||
Extract Inductive Fappli_IEEE.binary_float => float [
|
||||
"(fun s -> if s then (0.) else (-0.))"
|
||||
"(fun s -> if s then infinity else neg_infinity)"
|
||||
"nan"
|
||||
"(fun (s, m, e) -> failwith ""FIXME: No extraction from binary float allowed yet."")"
|
||||
].
|
||||
|
||||
Extract Constant JsNumber.of_int => "fun x -> x".
|
||||
|
||||
Extract Constant JsNumber.nan => "nan".
|
||||
Extract Constant JsNumber.zero => "0.".
|
||||
Extract Constant JsNumber.neg_zero => "(-0.)".
|
||||
Extract Constant JsNumber.one => "1.".
|
||||
Extract Constant JsNumber.infinity => "infinity".
|
||||
Extract Constant JsNumber.neg_infinity => "neg_infinity".
|
||||
Extract Constant JsNumber.max_value => "max_float".
|
||||
Extract Constant JsNumber.min_value => "(Int64.float_of_bits Int64.one)".
|
||||
Extract Constant JsNumber.pi => "(4. *. atan 1.)".
|
||||
Extract Constant JsNumber.e => "(exp 1.)".
|
||||
Extract Constant JsNumber.ln2 => "(log 2.)".
|
||||
Extract Constant JsNumber.floor => "floor".
|
||||
Extract Constant JsNumber.absolute => "abs_float".
|
||||
|
||||
Extract Constant JsNumber.from_string =>
|
||||
"(fun s ->
|
||||
try
|
||||
let s = (String.concat """" (List.map (String.make 1) s)) in
|
||||
if s = """" then 0. else float_of_string s
|
||||
with Failure ""float_of_string"" -> nan)
|
||||
(* Note that we're using `float_of_string' there, which does not have the same
|
||||
behavior than JavaScript. For instance it will read ""022"" as 22 instead of
|
||||
18, which should be the JavaScript result for it. *)".
|
||||
|
||||
Extract Constant JsNumber.to_string =>
|
||||
"(fun f ->
|
||||
prerr_string (""Warning: JsNumber.to_string called. This might be responsible for errors. Argument value: "" ^ string_of_float f ^ ""."");
|
||||
prerr_newline();
|
||||
let string_of_number n =
|
||||
let sfn = string_of_float n in
|
||||
(if (sfn = ""inf"") then ""Infinity"" else
|
||||
if (sfn = ""-inf"") then ""-Infinity"" else
|
||||
if (sfn = ""nan"") then ""NaN"" else
|
||||
let inum = int_of_float n in
|
||||
if (float_of_int inum = n) then (string_of_int inum) else (string_of_float n)) in
|
||||
let ret = ref [] in (* Ugly, but the API for OCaml string is not very functional... *)
|
||||
String.iter (fun c -> ret := c :: !ret) (string_of_number f);
|
||||
List.rev !ret)
|
||||
(* Note that this is ugly, we should use the spec of JsNumber.to_string here (9.8.1). *)".
|
||||
|
||||
Extract Constant JsNumber.add => "(+.)".
|
||||
Extract Constant JsNumber.sub => "(-.)".
|
||||
Extract Constant JsNumber.mult => "( *. )".
|
||||
Extract Constant JsNumber.div => "(/.)".
|
||||
Extract Constant JsNumber.fmod => "mod_float".
|
||||
Extract Constant JsNumber.neg => "(~-.)".
|
||||
Extract Constant JsNumber.sign => "(fun f -> float_of_int (compare f 0.))".
|
||||
Extract Constant JsNumber.number_comparable => "(fun n1 n2 -> 0 = compare n1 n2)".
|
||||
Extract Constant JsNumber.lt_bool => "(<)".
|
||||
|
||||
Extract Constant JsNumber.to_int32 =>
|
||||
"fun n ->
|
||||
match classify_float n with
|
||||
| FP_normal | FP_subnormal ->
|
||||
let i32 = 2. ** 32. in
|
||||
let i31 = 2. ** 31. in
|
||||
let posint = (if n < 0. then (-1.) else 1.) *. (floor (abs_float n)) in
|
||||
let int32bit =
|
||||
let smod = mod_float posint i32 in
|
||||
if smod < 0. then smod +. i32 else smod
|
||||
in
|
||||
(if int32bit >= i31 then int32bit -. i32 else int32bit)
|
||||
| _ -> 0.". (* LATER: do in Coq. Spec is 9.5, p. 47.*)
|
||||
|
||||
Extract Constant JsNumber.to_uint32 =>
|
||||
"fun n ->
|
||||
match classify_float n with
|
||||
| FP_normal | FP_subnormal ->
|
||||
let i32 = 2. ** 32. in
|
||||
let posint = (if n < 0. then (-1.) else 1.) *. (floor (abs_float n)) in
|
||||
let int32bit =
|
||||
let smod = mod_float posint i32 in
|
||||
if smod < 0. then smod +. i32 else smod
|
||||
in
|
||||
int32bit
|
||||
| _ -> 0.". (* LAER: do in Coq. Spec is 9.6, p47.*)
|
||||
|
||||
Extract Constant JsNumber.modulo_32 => "(fun x -> let r = mod_float x 32. in if x < 0. then r +. 32. else r)".
|
||||
Extract Constant JsNumber.int32_bitwise_not => "fun x -> Int32.to_float (Int32.lognot (Int32.of_float x))".
|
||||
Extract Constant JsNumber.int32_bitwise_and => "fun x y -> Int32.to_float (Int32.logand (Int32.of_float x) (Int32.of_float y))".
|
||||
Extract Constant JsNumber.int32_bitwise_or => "fun x y -> Int32.to_float (Int32.logor (Int32.of_float x) (Int32.of_float y))".
|
||||
Extract Constant JsNumber.int32_bitwise_xor => "fun x y -> Int32.to_float (Int32.logxor (Int32.of_float x) (Int32.of_float y))".
|
||||
Extract Constant JsNumber.int32_left_shift => "(fun x y -> Int32.to_float (Int32.shift_left (Int32.of_float x) (int_of_float y)))".
|
||||
Extract Constant JsNumber.int32_right_shift => "(fun x y -> Int32.to_float (Int32.shift_right (Int32.of_float x) (int_of_float y)))".
|
||||
Extract Constant JsNumber.uint32_right_shift =>
|
||||
"(fun x y ->
|
||||
let i31 = 2. ** 31. in
|
||||
let i32 = 2. ** 32. in
|
||||
let newx = if x >= i31 then x -. i32 else x in
|
||||
let r = Int32.to_float (Int32.shift_right_logical (Int32.of_float newx) (int_of_float y)) in
|
||||
if r < 0. then r +. i32 else r)".
|
||||
|
||||
Extract Constant int_of_char => "(fun c -> float_of_int (int_of_char c))".
|
||||
|
||||
Extract Constant ascii_comparable => "(=)".
|
||||
Extract Constant lt_int_decidable => "(<)".
|
||||
Extract Constant le_int_decidable => "(<=)".
|
||||
Extract Constant ge_nat_decidable => "(>=)".
|
||||
|
||||
(* TODO ARTHUR: This TLC lemma does not extract to something computable... whereas it should! *)
|
||||
Extract Constant prop_eq_decidable => "(=)".
|
||||
|
||||
Extract Constant env_loc_global_env_record => "0".
|
||||
|
||||
(* The following functions make pattern matches with floats and shall thus be removed. *)
|
||||
Extraction Inline Fappli_IEEE.Bplus Fappli_IEEE.binary_normalize Fappli_IEEE_bits.b64_plus.
|
||||
Extraction Inline Fappli_IEEE.Bmult Fappli_IEEE.Bmult_FF Fappli_IEEE_bits.b64_mult.
|
||||
Extraction Inline Fappli_IEEE.Bdiv Fappli_IEEE_bits.b64_div.
|
||||
|
||||
(* New options for the interpreter to work in Coq 8.4 *)
|
||||
Set Extraction AccessOpaque.
|
||||
|
||||
(* These parameters are implementation-dependant according to the spec.
|
||||
I've chosed some very simple values, but we could choose another thing for them. *)
|
||||
Extract Constant object_prealloc_global_proto => "(Coq_value_prim Coq_prim_null)".
|
||||
Extract Constant object_prealloc_global_class => "(
|
||||
let rec aux s = function
|
||||
| 0 -> []
|
||||
| n -> let n' = n - 1 in
|
||||
s.[n'] :: aux s n'
|
||||
in let aux2 s =
|
||||
List.rev (aux s (String.length s))
|
||||
in aux2 ""GlobalClass"")".
|
||||
|
||||
|
||||
(* Parsing *)
|
||||
Extract Constant parse_pickable => "(fun s strict ->
|
||||
let str = String.concat """" (List.map (String.make 1) s) in
|
||||
try
|
||||
let parserExp = Parser_main.exp_from_string ~force_strict:strict str in
|
||||
Some (JsSyntaxInfos.add_infos_prog strict
|
||||
(Translate_syntax.exp_to_prog parserExp))
|
||||
with
|
||||
(* | Translate_syntax.CoqSyntaxDoesNotSupport _ -> assert false (* Temporary *) *)
|
||||
| Parser.ParserFailure _
|
||||
| Parser.InvalidArgument ->
|
||||
prerr_string (""Warning: Parser error on eval. Input string: \"""" ^ str ^ ""\""\n"");
|
||||
None
|
||||
)".
|
||||
|
||||
|
||||
(* Debugging *)
|
||||
Extract Inlined Constant not_yet_implemented_because => "(fun s ->
|
||||
print_endline (__LOC__ ^ "": Not implemented because: "" ^ Prheap.string_of_char_list s) ;
|
||||
Coq_result_not_yet_implemented)".
|
||||
Extract Inlined Constant impossible_because => "(fun s ->
|
||||
print_endline (__LOC__ ^ "": Stuck because: "" ^ Prheap.string_of_char_list s) ;
|
||||
Coq_result_impossible)".
|
||||
Extract Inlined Constant impossible_with_heap_because => "(fun s message ->
|
||||
print_endline (__LOC__ ^ "": Stuck!\nState: "" ^ Prheap.prstate true s
|
||||
^ ""\nMessage:\t"" ^ Prheap.string_of_char_list message) ;
|
||||
Coq_result_impossible)".
|
||||
|
||||
|
||||
(* Final Extraction *)
|
||||
Extraction Blacklist string list bool.
|
||||
Separate Extraction runs run_javascript.
|
||||
|
||||
|
||||
|
||||
(* -- LATER: extract inequality_test_string in more efficient way*)
|
||||
|
||||
1051
samples/Coq/JsNumber.v
Normal file
1051
samples/Coq/JsNumber.v
Normal file
File diff suppressed because it is too large
Load Diff
1766
samples/Coq/JsPrettyInterm.v
Normal file
1766
samples/Coq/JsPrettyInterm.v
Normal file
File diff suppressed because it is too large
Load Diff
42
samples/Coq/Main.v
Normal file
42
samples/Coq/Main.v
Normal file
@@ -0,0 +1,42 @@
|
||||
Require Import FunctionNinjas.All.
|
||||
Require Import ListString.All.
|
||||
Require Import Computation.
|
||||
|
||||
Import C.Notations.
|
||||
|
||||
Definition error (message : LString.t) : C.t :=
|
||||
do_call! Command.ShowError message in
|
||||
ret.
|
||||
|
||||
Definition main : C.t :=
|
||||
call! card_is_valid := Command.AskCard in
|
||||
if card_is_valid then
|
||||
call! pin := Command.AskPIN in
|
||||
match pin with
|
||||
| None => error @@ LString.s "No PIN given."
|
||||
| Some pin =>
|
||||
call! pin_is_valid := Command.CheckPIN pin in
|
||||
if pin_is_valid then
|
||||
call! ask_amount := Command.AskAmount in
|
||||
match ask_amount with
|
||||
| None => error @@ LString.s "No amount given."
|
||||
| Some amount =>
|
||||
call! amount_is_valid := Command.CheckAmount amount in
|
||||
if amount_is_valid then
|
||||
call! card_is_given := Command.GiveCard in
|
||||
if card_is_given then
|
||||
call! amount_is_given := Command.GiveAmount amount in
|
||||
if amount_is_given then
|
||||
ret
|
||||
else
|
||||
error @@ LString.s "Cannot give you the amount. Please contact your bank."
|
||||
else
|
||||
error @@ LString.s "Cannot give you back the card. Please contact your bank."
|
||||
else
|
||||
error @@ LString.s "Invalid amount."
|
||||
end
|
||||
else
|
||||
error @@ LString.s "Invalid PIN."
|
||||
end
|
||||
else
|
||||
error @@ LString.s "Invalid card.".
|
||||
@@ -1,539 +0,0 @@
|
||||
Require Import Omega Relations Multiset SetoidList.
|
||||
|
||||
(** This file is deprecated, use [Permutation.v] instead.
|
||||
|
||||
Indeed, this file defines a notion of permutation based on
|
||||
multisets (there exists a permutation between two lists iff every
|
||||
elements have the same multiplicity in the two lists) which
|
||||
requires a more complex apparatus (the equipment of the domain
|
||||
with a decidable equality) than [Permutation] in [Permutation.v].
|
||||
|
||||
The relation between the two relations are in lemma
|
||||
[permutation_Permutation].
|
||||
|
||||
File [Permutation] concerns Leibniz equality : it shows in particular
|
||||
that [List.Permutation] and [permutation] are equivalent in this context.
|
||||
*)
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
Local Notation "[ ]" := nil.
|
||||
Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..).
|
||||
|
||||
Section Permut.
|
||||
|
||||
(** * From lists to multisets *)
|
||||
|
||||
Variable A : Type.
|
||||
Variable eqA : relation A.
|
||||
Hypothesis eqA_equiv : Equivalence eqA.
|
||||
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
|
||||
|
||||
Let emptyBag := EmptyBag A.
|
||||
Let singletonBag := SingletonBag _ eqA_dec.
|
||||
|
||||
(** contents of a list *)
|
||||
|
||||
Fixpoint list_contents (l:list A) : multiset A :=
|
||||
match l with
|
||||
| [] => emptyBag
|
||||
| a :: l => munion (singletonBag a) (list_contents l)
|
||||
end.
|
||||
|
||||
Lemma list_contents_app :
|
||||
forall l m:list A,
|
||||
meq (list_contents (l ++ m)) (munion (list_contents l) (list_contents m)).
|
||||
Proof.
|
||||
simple induction l; simpl; auto with datatypes.
|
||||
intros.
|
||||
apply meq_trans with
|
||||
(munion (singletonBag a) (munion (list_contents l0) (list_contents m)));
|
||||
auto with datatypes.
|
||||
Qed.
|
||||
|
||||
(** * [permutation]: definition and basic properties *)
|
||||
|
||||
Definition permutation (l m:list A) := meq (list_contents l) (list_contents m).
|
||||
|
||||
Lemma permut_refl : forall l:list A, permutation l l.
|
||||
Proof.
|
||||
unfold permutation; auto with datatypes.
|
||||
Qed.
|
||||
|
||||
Lemma permut_sym :
|
||||
forall l1 l2 : list A, permutation l1 l2 -> permutation l2 l1.
|
||||
Proof.
|
||||
unfold permutation, meq; intros; symmetry; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma permut_trans :
|
||||
forall l m n:list A, permutation l m -> permutation m n -> permutation l n.
|
||||
Proof.
|
||||
unfold permutation; intros.
|
||||
apply meq_trans with (list_contents m); auto with datatypes.
|
||||
Qed.
|
||||
|
||||
Lemma permut_cons_eq :
|
||||
forall l m:list A,
|
||||
permutation l m -> forall a a', eqA a a' -> permutation (a :: l) (a' :: m).
|
||||
Proof.
|
||||
unfold permutation; simpl; intros.
|
||||
apply meq_trans with (munion (singletonBag a') (list_contents l)).
|
||||
apply meq_left, meq_singleton; auto.
|
||||
auto with datatypes.
|
||||
Qed.
|
||||
|
||||
Lemma permut_cons :
|
||||
forall l m:list A,
|
||||
permutation l m -> forall a:A, permutation (a :: l) (a :: m).
|
||||
Proof.
|
||||
unfold permutation; simpl; auto with datatypes.
|
||||
Qed.
|
||||
|
||||
Lemma permut_app :
|
||||
forall l l' m m':list A,
|
||||
permutation l l' -> permutation m m' -> permutation (l ++ m) (l' ++ m').
|
||||
Proof.
|
||||
unfold permutation; intros.
|
||||
apply meq_trans with (munion (list_contents l) (list_contents m));
|
||||
auto using permut_cons, list_contents_app with datatypes.
|
||||
apply meq_trans with (munion (list_contents l') (list_contents m'));
|
||||
auto using permut_cons, list_contents_app with datatypes.
|
||||
apply meq_trans with (munion (list_contents l') (list_contents m));
|
||||
auto using permut_cons, list_contents_app with datatypes.
|
||||
Qed.
|
||||
|
||||
Lemma permut_add_inside_eq :
|
||||
forall a a' l1 l2 l3 l4, eqA a a' ->
|
||||
permutation (l1 ++ l2) (l3 ++ l4) ->
|
||||
permutation (l1 ++ a :: l2) (l3 ++ a' :: l4).
|
||||
Proof.
|
||||
unfold permutation, meq in *; intros.
|
||||
specialize H0 with a0.
|
||||
repeat rewrite list_contents_app in *; simpl in *.
|
||||
destruct (eqA_dec a a0) as [Ha|Ha]; rewrite H in Ha;
|
||||
decide (eqA_dec a' a0) with Ha; simpl; auto with arith.
|
||||
do 2 rewrite <- plus_n_Sm; f_equal; auto.
|
||||
Qed.
|
||||
|
||||
Lemma permut_add_inside :
|
||||
forall a l1 l2 l3 l4,
|
||||
permutation (l1 ++ l2) (l3 ++ l4) ->
|
||||
permutation (l1 ++ a :: l2) (l3 ++ a :: l4).
|
||||
Proof.
|
||||
unfold permutation, meq in *; intros.
|
||||
generalize (H a0); clear H.
|
||||
do 4 rewrite list_contents_app.
|
||||
simpl.
|
||||
destruct (eqA_dec a a0); simpl; auto with arith.
|
||||
do 2 rewrite <- plus_n_Sm; f_equal; auto.
|
||||
Qed.
|
||||
|
||||
Lemma permut_add_cons_inside_eq :
|
||||
forall a a' l l1 l2, eqA a a' ->
|
||||
permutation l (l1 ++ l2) ->
|
||||
permutation (a :: l) (l1 ++ a' :: l2).
|
||||
Proof.
|
||||
intros;
|
||||
replace (a :: l) with ([] ++ a :: l); trivial;
|
||||
apply permut_add_inside_eq; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma permut_add_cons_inside :
|
||||
forall a l l1 l2,
|
||||
permutation l (l1 ++ l2) ->
|
||||
permutation (a :: l) (l1 ++ a :: l2).
|
||||
Proof.
|
||||
intros;
|
||||
replace (a :: l) with ([] ++ a :: l); trivial;
|
||||
apply permut_add_inside; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma permut_middle :
|
||||
forall (l m:list A) (a:A), permutation (a :: l ++ m) (l ++ a :: m).
|
||||
Proof.
|
||||
intros; apply permut_add_cons_inside; auto using permut_sym, permut_refl.
|
||||
Qed.
|
||||
|
||||
Lemma permut_sym_app :
|
||||
forall l1 l2, permutation (l1 ++ l2) (l2 ++ l1).
|
||||
Proof.
|
||||
intros l1 l2;
|
||||
unfold permutation, meq;
|
||||
intro a; do 2 rewrite list_contents_app; simpl;
|
||||
auto with arith.
|
||||
Qed.
|
||||
|
||||
Lemma permut_rev :
|
||||
forall l, permutation l (rev l).
|
||||
Proof.
|
||||
induction l.
|
||||
simpl; trivial using permut_refl.
|
||||
simpl.
|
||||
apply permut_add_cons_inside.
|
||||
rewrite <- app_nil_end. trivial.
|
||||
Qed.
|
||||
|
||||
(** * Some inversion results. *)
|
||||
Lemma permut_conv_inv :
|
||||
forall e l1 l2, permutation (e :: l1) (e :: l2) -> permutation l1 l2.
|
||||
Proof.
|
||||
intros e l1 l2; unfold permutation, meq; simpl; intros H a;
|
||||
generalize (H a); apply plus_reg_l.
|
||||
Qed.
|
||||
|
||||
Lemma permut_app_inv1 :
|
||||
forall l l1 l2, permutation (l1 ++ l) (l2 ++ l) -> permutation l1 l2.
|
||||
Proof.
|
||||
intros l l1 l2; unfold permutation, meq; simpl;
|
||||
intros H a; generalize (H a); clear H.
|
||||
do 2 rewrite list_contents_app.
|
||||
simpl.
|
||||
intros; apply plus_reg_l with (multiplicity (list_contents l) a).
|
||||
rewrite plus_comm; rewrite H; rewrite plus_comm.
|
||||
trivial.
|
||||
Qed.
|
||||
|
||||
(** we can use [multiplicity] to define [InA] and [NoDupA]. *)
|
||||
|
||||
Fact if_eqA_then : forall a a' (B:Type)(b b':B),
|
||||
eqA a a' -> (if eqA_dec a a' then b else b') = b.
|
||||
Proof.
|
||||
intros. destruct eqA_dec as [_|NEQ]; auto.
|
||||
contradict NEQ; auto.
|
||||
Qed.
|
||||
|
||||
Lemma permut_app_inv2 :
|
||||
forall l l1 l2, permutation (l ++ l1) (l ++ l2) -> permutation l1 l2.
|
||||
Proof.
|
||||
intros l l1 l2; unfold permutation, meq; simpl;
|
||||
intros H a; generalize (H a); clear H.
|
||||
do 2 rewrite list_contents_app.
|
||||
simpl.
|
||||
intros; apply plus_reg_l with (multiplicity (list_contents l) a).
|
||||
trivial.
|
||||
Qed.
|
||||
|
||||
Lemma permut_remove_hd_eq :
|
||||
forall l l1 l2 a b, eqA a b ->
|
||||
permutation (a :: l) (l1 ++ b :: l2) -> permutation l (l1 ++ l2).
|
||||
Proof.
|
||||
unfold permutation, meq; simpl; intros l l1 l2 a b Heq H a0.
|
||||
specialize H with a0.
|
||||
rewrite list_contents_app in *; simpl in *.
|
||||
apply plus_reg_l with (if eqA_dec a a0 then 1 else 0).
|
||||
rewrite H; clear H.
|
||||
symmetry; rewrite plus_comm, <- ! plus_assoc; f_equal.
|
||||
rewrite plus_comm.
|
||||
destruct (eqA_dec a a0) as [Ha|Ha]; rewrite Heq in Ha;
|
||||
decide (eqA_dec b a0) with Ha; reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma permut_remove_hd :
|
||||
forall l l1 l2 a,
|
||||
permutation (a :: l) (l1 ++ a :: l2) -> permutation l (l1 ++ l2).
|
||||
Proof.
|
||||
eauto using permut_remove_hd_eq, Equivalence_Reflexive.
|
||||
Qed.
|
||||
|
||||
Fact if_eqA_else : forall a a' (B:Type)(b b':B),
|
||||
~eqA a a' -> (if eqA_dec a a' then b else b') = b'.
|
||||
Proof.
|
||||
intros. decide (eqA_dec a a') with H; auto.
|
||||
Qed.
|
||||
|
||||
Fact if_eqA_refl : forall a (B:Type)(b b':B),
|
||||
(if eqA_dec a a then b else b') = b.
|
||||
Proof.
|
||||
intros; apply (decide_left (eqA_dec a a)); auto with *.
|
||||
Qed.
|
||||
|
||||
(** PL: Inutilisable dans un rewrite sans un change prealable. *)
|
||||
|
||||
Global Instance if_eqA (B:Type)(b b':B) :
|
||||
Proper (eqA==>eqA==>@eq _) (fun x y => if eqA_dec x y then b else b').
|
||||
Proof.
|
||||
intros x x' Hxx' y y' Hyy'.
|
||||
intros; destruct (eqA_dec x y) as [H|H];
|
||||
destruct (eqA_dec x' y') as [H'|H']; auto.
|
||||
contradict H'; transitivity x; auto with *; transitivity y; auto with *.
|
||||
contradict H; transitivity x'; auto with *; transitivity y'; auto with *.
|
||||
Qed.
|
||||
|
||||
Fact if_eqA_rewrite_l : forall a1 a1' a2 (B:Type)(b b':B),
|
||||
eqA a1 a1' -> (if eqA_dec a1 a2 then b else b') =
|
||||
(if eqA_dec a1' a2 then b else b').
|
||||
Proof.
|
||||
intros; destruct (eqA_dec a1 a2) as [A1|A1];
|
||||
destruct (eqA_dec a1' a2) as [A1'|A1']; auto.
|
||||
contradict A1'; transitivity a1; eauto with *.
|
||||
contradict A1; transitivity a1'; eauto with *.
|
||||
Qed.
|
||||
|
||||
Fact if_eqA_rewrite_r : forall a1 a2 a2' (B:Type)(b b':B),
|
||||
eqA a2 a2' -> (if eqA_dec a1 a2 then b else b') =
|
||||
(if eqA_dec a1 a2' then b else b').
|
||||
Proof.
|
||||
intros; destruct (eqA_dec a1 a2) as [A2|A2];
|
||||
destruct (eqA_dec a1 a2') as [A2'|A2']; auto.
|
||||
contradict A2'; transitivity a2; eauto with *.
|
||||
contradict A2; transitivity a2'; eauto with *.
|
||||
Qed.
|
||||
|
||||
|
||||
Global Instance multiplicity_eqA (l:list A) :
|
||||
Proper (eqA==>@eq _) (multiplicity (list_contents l)).
|
||||
Proof.
|
||||
intros x x' Hxx'.
|
||||
induction l as [|y l Hl]; simpl; auto.
|
||||
rewrite (@if_eqA_rewrite_r y x x'); auto.
|
||||
Qed.
|
||||
|
||||
Lemma multiplicity_InA :
|
||||
forall l a, InA eqA a l <-> 0 < multiplicity (list_contents l) a.
|
||||
Proof.
|
||||
induction l.
|
||||
simpl.
|
||||
split; inversion 1.
|
||||
simpl.
|
||||
intros a'; split; intros H. inversion_clear H.
|
||||
apply (decide_left (eqA_dec a a')); auto with *.
|
||||
destruct (eqA_dec a a'); auto with *. simpl; rewrite <- IHl; auto.
|
||||
destruct (eqA_dec a a'); auto with *. right. rewrite IHl; auto.
|
||||
Qed.
|
||||
|
||||
Lemma multiplicity_InA_O :
|
||||
forall l a, ~ InA eqA a l -> multiplicity (list_contents l) a = 0.
|
||||
Proof.
|
||||
intros l a; rewrite multiplicity_InA;
|
||||
destruct (multiplicity (list_contents l) a); auto with arith.
|
||||
destruct 1; auto with arith.
|
||||
Qed.
|
||||
|
||||
Lemma multiplicity_InA_S :
|
||||
forall l a, InA eqA a l -> multiplicity (list_contents l) a >= 1.
|
||||
Proof.
|
||||
intros l a; rewrite multiplicity_InA; auto with arith.
|
||||
Qed.
|
||||
|
||||
Lemma multiplicity_NoDupA : forall l,
|
||||
NoDupA eqA l <-> (forall a, multiplicity (list_contents l) a <= 1).
|
||||
Proof.
|
||||
induction l.
|
||||
simpl.
|
||||
split; auto with arith.
|
||||
split; simpl.
|
||||
inversion_clear 1.
|
||||
rewrite IHl in H1.
|
||||
intros; destruct (eqA_dec a a0) as [EQ|NEQ]; simpl; auto with *.
|
||||
rewrite <- EQ.
|
||||
rewrite multiplicity_InA_O; auto.
|
||||
intros; constructor.
|
||||
rewrite multiplicity_InA.
|
||||
specialize (H a).
|
||||
rewrite if_eqA_refl in H.
|
||||
clear IHl; omega.
|
||||
rewrite IHl; intros.
|
||||
specialize (H a0). omega.
|
||||
Qed.
|
||||
|
||||
(** Permutation is compatible with InA. *)
|
||||
Lemma permut_InA_InA :
|
||||
forall l1 l2 e, permutation l1 l2 -> InA eqA e l1 -> InA eqA e l2.
|
||||
Proof.
|
||||
intros l1 l2 e.
|
||||
do 2 rewrite multiplicity_InA.
|
||||
unfold permutation, meq.
|
||||
intros H;rewrite H; auto.
|
||||
Qed.
|
||||
|
||||
Lemma permut_cons_InA :
|
||||
forall l1 l2 e, permutation (e :: l1) l2 -> InA eqA e l2.
|
||||
Proof.
|
||||
intros; apply (permut_InA_InA (e:=e) H); auto with *.
|
||||
Qed.
|
||||
|
||||
(** Permutation of an empty list. *)
|
||||
Lemma permut_nil :
|
||||
forall l, permutation l [] -> l = [].
|
||||
Proof.
|
||||
intro l; destruct l as [ | e l ]; trivial.
|
||||
assert (InA eqA e (e::l)) by (auto with *).
|
||||
intro Abs; generalize (permut_InA_InA Abs H).
|
||||
inversion 1.
|
||||
Qed.
|
||||
|
||||
(** Permutation for short lists. *)
|
||||
|
||||
Lemma permut_length_1:
|
||||
forall a b, permutation [a] [b] -> eqA a b.
|
||||
Proof.
|
||||
intros a b; unfold permutation, meq.
|
||||
intro P; specialize (P b); simpl in *.
|
||||
rewrite if_eqA_refl in *.
|
||||
destruct (eqA_dec a b); simpl; auto; discriminate.
|
||||
Qed.
|
||||
|
||||
Lemma permut_length_2 :
|
||||
forall a1 b1 a2 b2, permutation [a1; b1] [a2; b2] ->
|
||||
(eqA a1 a2) /\ (eqA b1 b2) \/ (eqA a1 b2) /\ (eqA a2 b1).
|
||||
Proof.
|
||||
intros a1 b1 a2 b2 P.
|
||||
assert (H:=permut_cons_InA P).
|
||||
inversion_clear H.
|
||||
left; split; auto.
|
||||
apply permut_length_1.
|
||||
red; red; intros.
|
||||
specialize (P a). simpl in *.
|
||||
rewrite (@if_eqA_rewrite_l a1 a2 a) in P by auto. omega.
|
||||
right.
|
||||
inversion_clear H0; [|inversion H].
|
||||
split; auto.
|
||||
apply permut_length_1.
|
||||
red; red; intros.
|
||||
specialize (P a); simpl in *.
|
||||
rewrite (@if_eqA_rewrite_l a1 b2 a) in P by auto. omega.
|
||||
Qed.
|
||||
|
||||
(** Permutation is compatible with length. *)
|
||||
Lemma permut_length :
|
||||
forall l1 l2, permutation l1 l2 -> length l1 = length l2.
|
||||
Proof.
|
||||
induction l1; intros l2 H.
|
||||
rewrite (permut_nil (permut_sym H)); auto.
|
||||
assert (H0:=permut_cons_InA H).
|
||||
destruct (InA_split H0) as (h2,(b,(t2,(H1,H2)))).
|
||||
subst l2.
|
||||
rewrite app_length.
|
||||
simpl; rewrite <- plus_n_Sm; f_equal.
|
||||
rewrite <- app_length.
|
||||
apply IHl1.
|
||||
apply permut_remove_hd with b.
|
||||
apply permut_trans with (a::l1); auto.
|
||||
revert H1; unfold permutation, meq; simpl.
|
||||
intros; f_equal; auto.
|
||||
rewrite (@if_eqA_rewrite_l a b a0); auto.
|
||||
Qed.
|
||||
|
||||
Lemma NoDupA_equivlistA_permut :
|
||||
forall l l', NoDupA eqA l -> NoDupA eqA l' ->
|
||||
equivlistA eqA l l' -> permutation l l'.
|
||||
Proof.
|
||||
intros.
|
||||
red; unfold meq; intros.
|
||||
rewrite multiplicity_NoDupA in H, H0.
|
||||
generalize (H a) (H0 a) (H1 a); clear H H0 H1.
|
||||
do 2 rewrite multiplicity_InA.
|
||||
destruct 3; omega.
|
||||
Qed.
|
||||
|
||||
End Permut.
|
||||
|
||||
Section Permut_map.
|
||||
|
||||
Variables A B : Type.
|
||||
|
||||
Variable eqA : relation A.
|
||||
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
|
||||
Hypothesis eqA_equiv : Equivalence eqA.
|
||||
|
||||
Variable eqB : B->B->Prop.
|
||||
Hypothesis eqB_dec : forall x y:B, { eqB x y }+{ ~eqB x y }.
|
||||
Hypothesis eqB_trans : Transitive eqB.
|
||||
|
||||
(** Permutation is compatible with map. *)
|
||||
|
||||
Lemma permut_map :
|
||||
forall f,
|
||||
(Proper (eqA==>eqB) f) ->
|
||||
forall l1 l2, permutation _ eqA_dec l1 l2 ->
|
||||
permutation _ eqB_dec (map f l1) (map f l2).
|
||||
Proof.
|
||||
intros f; induction l1.
|
||||
intros l2 P; rewrite (permut_nil eqA_equiv (permut_sym P)); apply permut_refl.
|
||||
intros l2 P.
|
||||
simpl.
|
||||
assert (H0:=permut_cons_InA eqA_equiv P).
|
||||
destruct (InA_split H0) as (h2,(b,(t2,(H1,H2)))).
|
||||
subst l2.
|
||||
rewrite map_app.
|
||||
simpl.
|
||||
apply permut_trans with (f b :: map f l1).
|
||||
revert H1; unfold permutation, meq; simpl.
|
||||
intros; f_equal; auto.
|
||||
destruct (eqB_dec (f b) a0) as [H2|H2];
|
||||
destruct (eqB_dec (f a) a0) as [H3|H3]; auto.
|
||||
destruct H3; transitivity (f b); auto with *.
|
||||
destruct H2; transitivity (f a); auto with *.
|
||||
apply permut_add_cons_inside.
|
||||
rewrite <- map_app.
|
||||
apply IHl1; auto.
|
||||
apply permut_remove_hd with b; trivial.
|
||||
apply permut_trans with (a::l1); auto.
|
||||
revert H1; unfold permutation, meq; simpl.
|
||||
intros; f_equal; auto.
|
||||
rewrite (@if_eqA_rewrite_l _ _ eqA_equiv eqA_dec a b a0); auto.
|
||||
Qed.
|
||||
|
||||
End Permut_map.
|
||||
|
||||
Require Import Permutation.
|
||||
|
||||
Section Permut_permut.
|
||||
|
||||
Variable A : Type.
|
||||
|
||||
Variable eqA : relation A.
|
||||
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
|
||||
Hypothesis eqA_equiv : Equivalence eqA.
|
||||
|
||||
Lemma Permutation_impl_permutation : forall l l',
|
||||
Permutation l l' -> permutation _ eqA_dec l l'.
|
||||
Proof.
|
||||
induction 1.
|
||||
apply permut_refl.
|
||||
apply permut_cons; auto using Equivalence_Reflexive.
|
||||
change (x :: y :: l) with ([x] ++ y :: l);
|
||||
apply permut_add_cons_inside; simpl;
|
||||
apply permut_cons_eq; auto using Equivalence_Reflexive, permut_refl.
|
||||
apply permut_trans with l'; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma permut_eqA : forall l l', Forall2 eqA l l' -> permutation _ eqA_dec l l'.
|
||||
Proof.
|
||||
induction 1.
|
||||
apply permut_refl.
|
||||
apply permut_cons_eq; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma permutation_Permutation : forall l l',
|
||||
permutation _ eqA_dec l l' <->
|
||||
exists l'', Permutation l l'' /\ Forall2 eqA l'' l'.
|
||||
Proof.
|
||||
split; intro H.
|
||||
(* -> *)
|
||||
induction l in l', H |- *.
|
||||
exists []; apply permut_sym, permut_nil in H as ->; auto using Forall2.
|
||||
pose proof H as H'.
|
||||
apply permut_cons_InA, InA_split in H
|
||||
as (l1 & y & l2 & Heq & ->); trivial.
|
||||
apply permut_remove_hd_eq, IHl in H'
|
||||
as (l'' & IHP & IHA); clear IHl; trivial.
|
||||
apply Forall2_app_inv_r in IHA as (l1'' & l2'' & Hl1 & Hl2 & ->).
|
||||
exists (l1'' ++ a :: l2''); split.
|
||||
apply Permutation_cons_app; trivial.
|
||||
apply Forall2_app, Forall2_cons; trivial.
|
||||
(* <- *)
|
||||
destruct H as (l'' & H & Heq).
|
||||
apply permut_trans with l''.
|
||||
apply Permutation_impl_permutation; trivial.
|
||||
apply permut_eqA; trivial.
|
||||
Qed.
|
||||
|
||||
End Permut_permut.
|
||||
|
||||
(* begin hide *)
|
||||
(** For compatibilty *)
|
||||
Notation permut_right := permut_cons (only parsing).
|
||||
Notation permut_tran := permut_trans (only parsing).
|
||||
(* end hide *)
|
||||
@@ -1,632 +0,0 @@
|
||||
(* Adapted in May 2006 by Jean-Marc Notin from initial contents by
|
||||
Laurent Thery (Huffmann contribution, October 2003) *)
|
||||
|
||||
Require Import List Setoid Compare_dec Morphisms.
|
||||
Import ListNotations. (* For notations [] and [a;b;c] *)
|
||||
Set Implicit Arguments.
|
||||
|
||||
Section Permutation.
|
||||
|
||||
Variable A:Type.
|
||||
|
||||
Inductive Permutation : list A -> list A -> Prop :=
|
||||
| perm_nil: Permutation [] []
|
||||
| perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l')
|
||||
| perm_swap x y l : Permutation (y::x::l) (x::y::l)
|
||||
| perm_trans l l' l'' :
|
||||
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
|
||||
|
||||
Local Hint Constructors Permutation.
|
||||
|
||||
(** Some facts about [Permutation] *)
|
||||
|
||||
Theorem Permutation_nil : forall (l : list A), Permutation [] l -> l = [].
|
||||
Proof.
|
||||
intros l HF.
|
||||
remember (@nil A) as m in HF.
|
||||
induction HF; discriminate || auto.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_nil_cons : forall (l : list A) (x : A),
|
||||
~ Permutation nil (x::l).
|
||||
Proof.
|
||||
intros l x HF.
|
||||
apply Permutation_nil in HF; discriminate.
|
||||
Qed.
|
||||
|
||||
(** Permutation over lists is a equivalence relation *)
|
||||
|
||||
Theorem Permutation_refl : forall l : list A, Permutation l l.
|
||||
Proof.
|
||||
induction l; constructor. exact IHl.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_sym : forall l l' : list A,
|
||||
Permutation l l' -> Permutation l' l.
|
||||
Proof.
|
||||
intros l l' Hperm; induction Hperm; auto.
|
||||
apply perm_trans with (l':=l'); assumption.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_trans : forall l l' l'' : list A,
|
||||
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
|
||||
Proof.
|
||||
exact perm_trans.
|
||||
Qed.
|
||||
|
||||
End Permutation.
|
||||
|
||||
Hint Resolve Permutation_refl perm_nil perm_skip.
|
||||
|
||||
(* These hints do not reduce the size of the problem to solve and they
|
||||
must be used with care to avoid combinatoric explosions *)
|
||||
|
||||
Local Hint Resolve perm_swap perm_trans.
|
||||
Local Hint Resolve Permutation_sym Permutation_trans.
|
||||
|
||||
(* This provides reflexivity, symmetry and transitivity and rewriting
|
||||
on morphims to come *)
|
||||
|
||||
Instance Permutation_Equivalence A : Equivalence (@Permutation A) | 10 := {
|
||||
Equivalence_Reflexive := @Permutation_refl A ;
|
||||
Equivalence_Symmetric := @Permutation_sym A ;
|
||||
Equivalence_Transitive := @Permutation_trans A }.
|
||||
|
||||
Instance Permutation_cons A :
|
||||
Proper (Logic.eq ==> @Permutation A ==> @Permutation A) (@cons A) | 10.
|
||||
Proof.
|
||||
repeat intro; subst; auto using perm_skip.
|
||||
Qed.
|
||||
|
||||
Section Permutation_properties.
|
||||
|
||||
Variable A:Type.
|
||||
|
||||
Implicit Types a b : A.
|
||||
Implicit Types l m : list A.
|
||||
|
||||
(** Compatibility with others operations on lists *)
|
||||
|
||||
Theorem Permutation_in : forall (l l' : list A) (x : A),
|
||||
Permutation l l' -> In x l -> In x l'.
|
||||
Proof.
|
||||
intros l l' x Hperm; induction Hperm; simpl; tauto.
|
||||
Qed.
|
||||
|
||||
Global Instance Permutation_in' :
|
||||
Proper (Logic.eq ==> @Permutation A ==> iff) (@In A) | 10.
|
||||
Proof.
|
||||
repeat red; intros; subst; eauto using Permutation_in.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_app_tail : forall (l l' tl : list A),
|
||||
Permutation l l' -> Permutation (l++tl) (l'++tl).
|
||||
Proof.
|
||||
intros l l' tl Hperm; induction Hperm as [|x l l'|x y l|l l' l'']; simpl; auto.
|
||||
eapply Permutation_trans with (l':=l'++tl); trivial.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_app_head : forall (l tl tl' : list A),
|
||||
Permutation tl tl' -> Permutation (l++tl) (l++tl').
|
||||
Proof.
|
||||
intros l tl tl' Hperm; induction l;
|
||||
[trivial | repeat rewrite <- app_comm_cons; constructor; assumption].
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_app : forall (l m l' m' : list A),
|
||||
Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m').
|
||||
Proof.
|
||||
intros l m l' m' Hpermll' Hpermmm';
|
||||
induction Hpermll' as [|x l l'|x y l|l l' l''];
|
||||
repeat rewrite <- app_comm_cons; auto.
|
||||
apply Permutation_trans with (l' := (x :: y :: l ++ m));
|
||||
[idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial.
|
||||
apply Permutation_trans with (l' := (l' ++ m')); try assumption.
|
||||
apply Permutation_app_tail; assumption.
|
||||
Qed.
|
||||
|
||||
Global Instance Permutation_app' :
|
||||
Proper (@Permutation A ==> @Permutation A ==> @Permutation A) (@app A) | 10.
|
||||
Proof.
|
||||
repeat intro; now apply Permutation_app.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_add_inside : forall a (l l' tl tl' : list A),
|
||||
Permutation l l' -> Permutation tl tl' ->
|
||||
Permutation (l ++ a :: tl) (l' ++ a :: tl').
|
||||
Proof.
|
||||
intros; apply Permutation_app; auto.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_cons_append : forall (l : list A) x,
|
||||
Permutation (x :: l) (l ++ x :: nil).
|
||||
Proof. induction l; intros; auto. simpl. rewrite <- IHl; auto. Qed.
|
||||
Local Hint Resolve Permutation_cons_append.
|
||||
|
||||
Theorem Permutation_app_comm : forall (l l' : list A),
|
||||
Permutation (l ++ l') (l' ++ l).
|
||||
Proof.
|
||||
induction l as [|x l]; simpl; intro l'.
|
||||
rewrite app_nil_r; trivial. rewrite IHl.
|
||||
rewrite app_comm_cons, Permutation_cons_append.
|
||||
now rewrite <- app_assoc.
|
||||
Qed.
|
||||
Local Hint Resolve Permutation_app_comm.
|
||||
|
||||
Theorem Permutation_cons_app : forall (l l1 l2:list A) a,
|
||||
Permutation l (l1 ++ l2) -> Permutation (a :: l) (l1 ++ a :: l2).
|
||||
Proof.
|
||||
intros l l1 l2 a H. rewrite H.
|
||||
rewrite app_comm_cons, Permutation_cons_append.
|
||||
now rewrite <- app_assoc.
|
||||
Qed.
|
||||
Local Hint Resolve Permutation_cons_app.
|
||||
|
||||
Theorem Permutation_middle : forall (l1 l2:list A) a,
|
||||
Permutation (a :: l1 ++ l2) (l1 ++ a :: l2).
|
||||
Proof.
|
||||
auto.
|
||||
Qed.
|
||||
Local Hint Resolve Permutation_middle.
|
||||
|
||||
Theorem Permutation_rev : forall (l : list A), Permutation l (rev l).
|
||||
Proof.
|
||||
induction l as [| x l]; simpl; trivial. now rewrite IHl at 1.
|
||||
Qed.
|
||||
|
||||
Global Instance Permutation_rev' :
|
||||
Proper (@Permutation A ==> @Permutation A) (@rev A) | 10.
|
||||
Proof.
|
||||
repeat intro; now rewrite <- 2 Permutation_rev.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_length : forall (l l' : list A),
|
||||
Permutation l l' -> length l = length l'.
|
||||
Proof.
|
||||
intros l l' Hperm; induction Hperm; simpl; auto. now transitivity (length l').
|
||||
Qed.
|
||||
|
||||
Global Instance Permutation_length' :
|
||||
Proper (@Permutation A ==> Logic.eq) (@length A) | 10.
|
||||
Proof.
|
||||
exact Permutation_length.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_ind_bis :
|
||||
forall P : list A -> list A -> Prop,
|
||||
P [] [] ->
|
||||
(forall x l l', Permutation l l' -> P l l' -> P (x :: l) (x :: l')) ->
|
||||
(forall x y l l', Permutation l l' -> P l l' -> P (y :: x :: l) (x :: y :: l')) ->
|
||||
(forall l l' l'', Permutation l l' -> P l l' -> Permutation l' l'' -> P l' l'' -> P l l'') ->
|
||||
forall l l', Permutation l l' -> P l l'.
|
||||
Proof.
|
||||
intros P Hnil Hskip Hswap Htrans.
|
||||
induction 1; auto.
|
||||
apply Htrans with (x::y::l); auto.
|
||||
apply Hswap; auto.
|
||||
induction l; auto.
|
||||
apply Hskip; auto.
|
||||
apply Hskip; auto.
|
||||
induction l; auto.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Ltac break_list l x l' H :=
|
||||
destruct l as [|x l']; simpl in *;
|
||||
injection H; intros; subst; clear H.
|
||||
|
||||
Theorem Permutation_nil_app_cons : forall (l l' : list A) (x : A),
|
||||
~ Permutation nil (l++x::l').
|
||||
Proof.
|
||||
intros l l' x HF.
|
||||
apply Permutation_nil in HF. destruct l; discriminate.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_app_inv : forall (l1 l2 l3 l4:list A) a,
|
||||
Permutation (l1++a::l2) (l3++a::l4) -> Permutation (l1++l2) (l3 ++ l4).
|
||||
Proof.
|
||||
intros l1 l2 l3 l4 a; revert l1 l2 l3 l4.
|
||||
set (P l l' :=
|
||||
forall l1 l2 l3 l4, l=l1++a::l2 -> l'=l3++a::l4 ->
|
||||
Permutation (l1++l2) (l3++l4)).
|
||||
cut (forall l l', Permutation l l' -> P l l').
|
||||
intros H; intros; eapply H; eauto.
|
||||
apply (Permutation_ind_bis P); unfold P; clear P.
|
||||
- (* nil *)
|
||||
intros; now destruct l1.
|
||||
- (* skip *)
|
||||
intros x l l' H IH; intros.
|
||||
break_list l1 b l1' H0; break_list l3 c l3' H1.
|
||||
auto.
|
||||
now rewrite H.
|
||||
now rewrite <- H.
|
||||
now rewrite (IH _ _ _ _ eq_refl eq_refl).
|
||||
- (* swap *)
|
||||
intros x y l l' Hp IH; intros.
|
||||
break_list l1 b l1' H; break_list l3 c l3' H0.
|
||||
auto.
|
||||
break_list l3' b l3'' H.
|
||||
auto.
|
||||
constructor. now rewrite Permutation_middle.
|
||||
break_list l1' c l1'' H1.
|
||||
auto.
|
||||
constructor. now rewrite Permutation_middle.
|
||||
break_list l3' d l3'' H; break_list l1' e l1'' H1.
|
||||
auto.
|
||||
rewrite perm_swap. constructor. now rewrite Permutation_middle.
|
||||
rewrite perm_swap. constructor. now rewrite Permutation_middle.
|
||||
now rewrite perm_swap, (IH _ _ _ _ eq_refl eq_refl).
|
||||
- (*trans*)
|
||||
intros.
|
||||
destruct (In_split a l') as (l'1,(l'2,H6)).
|
||||
rewrite <- H.
|
||||
subst l.
|
||||
apply in_or_app; right; red; auto.
|
||||
apply perm_trans with (l'1++l'2).
|
||||
apply (H0 _ _ _ _ H3 H6).
|
||||
apply (H2 _ _ _ _ H6 H4).
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_cons_inv l l' a :
|
||||
Permutation (a::l) (a::l') -> Permutation l l'.
|
||||
Proof.
|
||||
intro H; exact (Permutation_app_inv [] l [] l' a H).
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_cons_app_inv l l1 l2 a :
|
||||
Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2).
|
||||
Proof.
|
||||
intro H; exact (Permutation_app_inv [] l l1 l2 a H).
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_app_inv_l : forall l l1 l2,
|
||||
Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2.
|
||||
Proof.
|
||||
induction l; simpl; auto.
|
||||
intros.
|
||||
apply IHl.
|
||||
apply Permutation_cons_inv with a; auto.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_app_inv_r : forall l l1 l2,
|
||||
Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2.
|
||||
Proof.
|
||||
induction l.
|
||||
intros l1 l2; do 2 rewrite app_nil_r; auto.
|
||||
intros.
|
||||
apply IHl.
|
||||
apply Permutation_app_inv with a; auto.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_length_1_inv: forall a l, Permutation [a] l -> l = [a].
|
||||
Proof.
|
||||
intros a l H; remember [a] as m in H.
|
||||
induction H; try (injection Heqm as -> ->; clear Heqm);
|
||||
discriminate || auto.
|
||||
apply Permutation_nil in H as ->; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_length_1: forall a b, Permutation [a] [b] -> a = b.
|
||||
Proof.
|
||||
intros a b H.
|
||||
apply Permutation_length_1_inv in H; injection H as ->; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_length_2_inv :
|
||||
forall a1 a2 l, Permutation [a1;a2] l -> l = [a1;a2] \/ l = [a2;a1].
|
||||
Proof.
|
||||
intros a1 a2 l H; remember [a1;a2] as m in H.
|
||||
revert a1 a2 Heqm.
|
||||
induction H; intros; try (injection Heqm; intros; subst; clear Heqm);
|
||||
discriminate || (try tauto).
|
||||
apply Permutation_length_1_inv in H as ->; left; auto.
|
||||
apply IHPermutation1 in Heqm as [H1|H1]; apply IHPermutation2 in H1 as ();
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_length_2 :
|
||||
forall a1 a2 b1 b2, Permutation [a1;a2] [b1;b2] ->
|
||||
a1 = b1 /\ a2 = b2 \/ a1 = b2 /\ a2 = b1.
|
||||
Proof.
|
||||
intros a1 b1 a2 b2 H.
|
||||
apply Permutation_length_2_inv in H as [H|H]; injection H as -> ->; auto.
|
||||
Qed.
|
||||
|
||||
Let in_middle l l1 l2 (a:A) : l = l1 ++ a :: l2 ->
|
||||
forall x, In x l <-> a = x \/ In x (l1++l2).
|
||||
Proof.
|
||||
intros; subst; rewrite !in_app_iff; simpl. tauto.
|
||||
Qed.
|
||||
|
||||
Lemma NoDup_cardinal_incl (l l' : list A) : NoDup l -> NoDup l' ->
|
||||
length l = length l' -> incl l l' -> incl l' l.
|
||||
Proof.
|
||||
intros N. revert l'. induction N as [|a l Hal Hl IH].
|
||||
- destruct l'; now auto.
|
||||
- intros l' Hl' E H x Hx.
|
||||
assert (Ha : In a l') by (apply H; simpl; auto).
|
||||
destruct (in_split _ _ Ha) as (l1 & l2 & H12). clear Ha.
|
||||
rewrite in_middle in Hx; eauto.
|
||||
destruct Hx as [Hx|Hx]; [left|right]; auto.
|
||||
apply (IH (l1++l2)); auto.
|
||||
* apply NoDup_remove_1 with a; rewrite <- H12; auto.
|
||||
* apply eq_add_S.
|
||||
simpl in E; rewrite E, H12, !app_length; simpl; auto with arith.
|
||||
* intros y Hy. assert (Hy' : In y l') by (apply H; simpl; auto).
|
||||
rewrite in_middle in Hy'; eauto.
|
||||
destruct Hy'; auto. subst y; intuition.
|
||||
Qed.
|
||||
|
||||
Lemma NoDup_Permutation l l' : NoDup l -> NoDup l' ->
|
||||
(forall x:A, In x l <-> In x l') -> Permutation l l'.
|
||||
Proof.
|
||||
intros N. revert l'. induction N as [|a l Hal Hl IH].
|
||||
- destruct l'; simpl; auto.
|
||||
intros Hl' H. exfalso. rewrite (H a); auto.
|
||||
- intros l' Hl' H.
|
||||
assert (Ha : In a l') by (apply H; simpl; auto).
|
||||
destruct (In_split _ _ Ha) as (l1 & l2 & H12).
|
||||
rewrite H12.
|
||||
apply Permutation_cons_app.
|
||||
apply IH; auto.
|
||||
* apply NoDup_remove_1 with a; rewrite <- H12; auto.
|
||||
* intro x. split; intros Hx.
|
||||
+ assert (Hx' : In x l') by (apply H; simpl; auto).
|
||||
rewrite in_middle in Hx'; eauto.
|
||||
destruct Hx'; auto. subst; intuition.
|
||||
+ assert (Hx' : In x l') by (rewrite (in_middle l1 l2 a); eauto).
|
||||
rewrite <- H in Hx'. destruct Hx'; auto.
|
||||
subst. destruct (NoDup_remove_2 _ _ _ Hl' Hx).
|
||||
Qed.
|
||||
|
||||
Lemma NoDup_Permutation_bis l l' : NoDup l -> NoDup l' ->
|
||||
length l = length l' -> incl l l' -> Permutation l l'.
|
||||
Proof.
|
||||
intros. apply NoDup_Permutation; auto.
|
||||
split; auto. apply NoDup_cardinal_incl; auto.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_NoDup l l' : Permutation l l' -> NoDup l -> NoDup l'.
|
||||
Proof.
|
||||
induction 1; auto.
|
||||
* inversion_clear 1; constructor; eauto using Permutation_in.
|
||||
* inversion_clear 1 as [|? ? H1 H2]. inversion_clear H2; simpl in *.
|
||||
constructor. simpl; intuition. constructor; intuition.
|
||||
Qed.
|
||||
|
||||
Global Instance Permutation_NoDup' :
|
||||
Proper (@Permutation A ==> iff) (@NoDup A) | 10.
|
||||
Proof.
|
||||
repeat red; eauto using Permutation_NoDup.
|
||||
Qed.
|
||||
|
||||
End Permutation_properties.
|
||||
|
||||
Section Permutation_map.
|
||||
|
||||
Variable A B : Type.
|
||||
Variable f : A -> B.
|
||||
|
||||
Lemma Permutation_map l l' :
|
||||
Permutation l l' -> Permutation (map f l) (map f l').
|
||||
Proof.
|
||||
induction 1; simpl; eauto.
|
||||
Qed.
|
||||
|
||||
Global Instance Permutation_map' :
|
||||
Proper (@Permutation A ==> @Permutation B) (map f) | 10.
|
||||
Proof.
|
||||
exact Permutation_map.
|
||||
Qed.
|
||||
|
||||
End Permutation_map.
|
||||
|
||||
Section Injection.
|
||||
|
||||
Definition injective {A B} (f : A->B) :=
|
||||
forall x y, f x = f y -> x = y.
|
||||
|
||||
Lemma injective_map_NoDup {A B} (f:A->B) (l:list A) :
|
||||
injective f -> NoDup l -> NoDup (map f l).
|
||||
Proof.
|
||||
intros Hf. induction 1 as [|x l Hx Hl IH]; simpl; constructor; trivial.
|
||||
rewrite in_map_iff. intros (y & Hy & Hy'). apply Hf in Hy. now subst.
|
||||
Qed.
|
||||
|
||||
Lemma injective_bounded_surjective n f :
|
||||
injective f ->
|
||||
(forall x, x < n -> f x < n) ->
|
||||
(forall y, y < n -> exists x, x < n /\ f x = y).
|
||||
Proof.
|
||||
intros Hf H.
|
||||
set (l := seq 0 n).
|
||||
assert (P : incl (map f l) l).
|
||||
{ intros x. rewrite in_map_iff. intros (y & <- & Hy').
|
||||
unfold l in *. rewrite in_seq in *. simpl in *.
|
||||
destruct Hy' as (_,Hy'). auto with arith. }
|
||||
assert (P' : incl l (map f l)).
|
||||
{ unfold l.
|
||||
apply NoDup_cardinal_incl; auto using injective_map_NoDup, seq_NoDup.
|
||||
now rewrite map_length. }
|
||||
intros x Hx.
|
||||
assert (Hx' : In x l) by (unfold l; rewrite in_seq; auto with arith).
|
||||
apply P' in Hx'.
|
||||
rewrite in_map_iff in Hx'. destruct Hx' as (y & Hy & Hy').
|
||||
exists y; split; auto. unfold l in *; rewrite in_seq in Hy'.
|
||||
destruct Hy'; auto with arith.
|
||||
Qed.
|
||||
|
||||
Lemma nat_bijection_Permutation n f :
|
||||
injective f -> (forall x, x < n -> f x < n) ->
|
||||
let l := seq 0 n in Permutation (map f l) l.
|
||||
Proof.
|
||||
intros Hf BD.
|
||||
apply NoDup_Permutation_bis; auto using injective_map_NoDup, seq_NoDup.
|
||||
* now rewrite map_length.
|
||||
* intros x. rewrite in_map_iff. intros (y & <- & Hy').
|
||||
rewrite in_seq in *. simpl in *.
|
||||
destruct Hy' as (_,Hy'). auto with arith.
|
||||
Qed.
|
||||
|
||||
End Injection.
|
||||
|
||||
Section Permutation_alt.
|
||||
Variable A:Type.
|
||||
Implicit Type a : A.
|
||||
Implicit Type l : list A.
|
||||
|
||||
(** Alternative characterization of permutation
|
||||
via [nth_error] and [nth] *)
|
||||
|
||||
Let adapt f n :=
|
||||
let m := f (S n) in if le_lt_dec m (f 0) then m else pred m.
|
||||
|
||||
Let adapt_injective f : injective f -> injective (adapt f).
|
||||
Proof.
|
||||
unfold adapt. intros Hf x y EQ.
|
||||
destruct le_lt_dec as [LE|LT]; destruct le_lt_dec as [LE'|LT'].
|
||||
- now apply eq_add_S, Hf.
|
||||
- apply Lt.le_lt_or_eq in LE.
|
||||
destruct LE as [LT|EQ']; [|now apply Hf in EQ'].
|
||||
unfold lt in LT. rewrite EQ in LT.
|
||||
rewrite <- (Lt.S_pred _ _ LT') in LT.
|
||||
elim (Lt.lt_not_le _ _ LT' LT).
|
||||
- apply Lt.le_lt_or_eq in LE'.
|
||||
destruct LE' as [LT'|EQ']; [|now apply Hf in EQ'].
|
||||
unfold lt in LT'. rewrite <- EQ in LT'.
|
||||
rewrite <- (Lt.S_pred _ _ LT) in LT'.
|
||||
elim (Lt.lt_not_le _ _ LT LT').
|
||||
- apply eq_add_S, Hf.
|
||||
now rewrite (Lt.S_pred _ _ LT), (Lt.S_pred _ _ LT'), EQ.
|
||||
Qed.
|
||||
|
||||
Let adapt_ok a l1 l2 f : injective f -> length l1 = f 0 ->
|
||||
forall n, nth_error (l1++a::l2) (f (S n)) = nth_error (l1++l2) (adapt f n).
|
||||
Proof.
|
||||
unfold adapt. intros Hf E n.
|
||||
destruct le_lt_dec as [LE|LT].
|
||||
- apply Lt.le_lt_or_eq in LE.
|
||||
destruct LE as [LT|EQ]; [|now apply Hf in EQ].
|
||||
rewrite <- E in LT.
|
||||
rewrite 2 nth_error_app1; auto.
|
||||
- rewrite (Lt.S_pred _ _ LT) at 1.
|
||||
rewrite <- E, (Lt.S_pred _ _ LT) in LT.
|
||||
rewrite 2 nth_error_app2; auto with arith.
|
||||
rewrite <- Minus.minus_Sn_m; auto with arith.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_nth_error l l' :
|
||||
Permutation l l' <->
|
||||
(length l = length l' /\
|
||||
exists f:nat->nat,
|
||||
injective f /\ forall n, nth_error l' n = nth_error l (f n)).
|
||||
Proof.
|
||||
split.
|
||||
{ intros P.
|
||||
split; [now apply Permutation_length|].
|
||||
induction P.
|
||||
- exists (fun n => n).
|
||||
split; try red; auto.
|
||||
- destruct IHP as (f & Hf & Hf').
|
||||
exists (fun n => match n with O => O | S n => S (f n) end).
|
||||
split; try red.
|
||||
* intros [|y] [|z]; simpl; now auto.
|
||||
* intros [|n]; simpl; auto.
|
||||
- exists (fun n => match n with 0 => 1 | 1 => 0 | n => n end).
|
||||
split; try red.
|
||||
* intros [|[|z]] [|[|t]]; simpl; now auto.
|
||||
* intros [|[|n]]; simpl; auto.
|
||||
- destruct IHP1 as (f & Hf & Hf').
|
||||
destruct IHP2 as (g & Hg & Hg').
|
||||
exists (fun n => f (g n)).
|
||||
split; try red.
|
||||
* auto.
|
||||
* intros n. rewrite <- Hf'; auto. }
|
||||
{ revert l. induction l'.
|
||||
- intros [|l] (E & _); now auto.
|
||||
- intros l (E & f & Hf & Hf').
|
||||
simpl in E.
|
||||
assert (Ha : nth_error l (f 0) = Some a)
|
||||
by (symmetry; apply (Hf' 0)).
|
||||
destruct (nth_error_split l (f 0) Ha) as (l1 & l2 & L12 & L1).
|
||||
rewrite L12. rewrite <- Permutation_middle. constructor.
|
||||
apply IHl'; split; [|exists (adapt f); split].
|
||||
* revert E. rewrite L12, !app_length. simpl.
|
||||
rewrite <- plus_n_Sm. now injection 1.
|
||||
* now apply adapt_injective.
|
||||
* intro n. rewrite <- (adapt_ok a), <- L12; auto.
|
||||
apply (Hf' (S n)). }
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_nth_error_bis l l' :
|
||||
Permutation l l' <->
|
||||
exists f:nat->nat,
|
||||
injective f /\
|
||||
(forall n, n < length l -> f n < length l) /\
|
||||
(forall n, nth_error l' n = nth_error l (f n)).
|
||||
Proof.
|
||||
rewrite Permutation_nth_error; split.
|
||||
- intros (E & f & Hf & Hf').
|
||||
exists f. do 2 (split; trivial).
|
||||
intros n Hn.
|
||||
destruct (Lt.le_or_lt (length l) (f n)) as [LE|LT]; trivial.
|
||||
rewrite <- nth_error_None, <- Hf', nth_error_None, <- E in LE.
|
||||
elim (Lt.lt_not_le _ _ Hn LE).
|
||||
- intros (f & Hf & Hf2 & Hf3); split; [|exists f; auto].
|
||||
assert (H : length l' <= length l') by auto with arith.
|
||||
rewrite <- nth_error_None, Hf3, nth_error_None in H.
|
||||
destruct (Lt.le_or_lt (length l) (length l')) as [LE|LT];
|
||||
[|apply Hf2 in LT; elim (Lt.lt_not_le _ _ LT H)].
|
||||
apply Lt.le_lt_or_eq in LE. destruct LE as [LT|EQ]; trivial.
|
||||
rewrite <- nth_error_Some, Hf3, nth_error_Some in LT.
|
||||
destruct (injective_bounded_surjective Hf Hf2 LT) as (y & Hy & Hy').
|
||||
apply Hf in Hy'. subst y. elim (Lt.lt_irrefl _ Hy).
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_nth l l' d :
|
||||
Permutation l l' <->
|
||||
(let n := length l in
|
||||
length l' = n /\
|
||||
exists f:nat->nat,
|
||||
(forall x, x < n -> f x < n) /\
|
||||
(forall x y, x < n -> y < n -> f x = f y -> x = y) /\
|
||||
(forall x, x < n -> nth x l' d = nth (f x) l d)).
|
||||
Proof.
|
||||
split.
|
||||
- intros H.
|
||||
assert (E := Permutation_length H).
|
||||
split; auto.
|
||||
apply Permutation_nth_error_bis in H.
|
||||
destruct H as (f & Hf & Hf2 & Hf3).
|
||||
exists f. split; [|split]; auto.
|
||||
intros n Hn. rewrite <- 2 nth_default_eq. unfold nth_default.
|
||||
now rewrite Hf3.
|
||||
- intros (E & f & Hf1 & Hf2 & Hf3).
|
||||
rewrite Permutation_nth_error.
|
||||
split; auto.
|
||||
exists (fun n => if le_lt_dec (length l) n then n else f n).
|
||||
split.
|
||||
* intros x y.
|
||||
destruct le_lt_dec as [LE|LT];
|
||||
destruct le_lt_dec as [LE'|LT']; auto.
|
||||
+ apply Hf1 in LT'. intros ->.
|
||||
elim (Lt.lt_irrefl (f y)). eapply Lt.lt_le_trans; eauto.
|
||||
+ apply Hf1 in LT. intros <-.
|
||||
elim (Lt.lt_irrefl (f x)). eapply Lt.lt_le_trans; eauto.
|
||||
* intros n.
|
||||
destruct le_lt_dec as [LE|LT].
|
||||
+ assert (LE' : length l' <= n) by (now rewrite E).
|
||||
rewrite <- nth_error_None in LE, LE'. congruence.
|
||||
+ assert (LT' : n < length l') by (now rewrite E).
|
||||
specialize (Hf3 n LT). rewrite <- 2 nth_default_eq in Hf3.
|
||||
unfold nth_default in Hf3.
|
||||
apply Hf1 in LT.
|
||||
rewrite <- nth_error_Some in LT, LT'.
|
||||
do 2 destruct nth_error; congruence.
|
||||
Qed.
|
||||
|
||||
End Permutation_alt.
|
||||
|
||||
(* begin hide *)
|
||||
Notation Permutation_app_swap := Permutation_app_comm (only parsing).
|
||||
(* end hide *)
|
||||
@@ -1,2 +0,0 @@
|
||||
Require Export Sorted.
|
||||
Require Export Mergesort.
|
||||
62
samples/Coq/Spec.v
Normal file
62
samples/Coq/Spec.v
Normal file
@@ -0,0 +1,62 @@
|
||||
(** Specifications. *)
|
||||
Require Import Coq.Lists.List.
|
||||
Require Import Coq.Strings.Ascii.
|
||||
Require Import FunctionNinjas.All.
|
||||
Require Import ListString.All.
|
||||
Require Import Computation.
|
||||
|
||||
Import ListNotations.
|
||||
Local Open Scope char.
|
||||
|
||||
(** A run is an execution of the program with explicit answers for the
|
||||
system calls. *)
|
||||
Module Run.
|
||||
(** We define a run by induction on the structure of a computation. *)
|
||||
Inductive t : C.t -> Type :=
|
||||
| Ret : t C.Ret
|
||||
| Call : forall (command : Command.t) (answer : Command.answer command)
|
||||
{handler : Command.answer command -> C.t}, t (handler answer) ->
|
||||
t (C.Call command handler).
|
||||
|
||||
(** The trace of a run. *)
|
||||
Fixpoint trace {x : C.t} (run : t x)
|
||||
: list {command : Command.t & Command.answer command} :=
|
||||
match run with
|
||||
| Ret => []
|
||||
| Call command answer _ run => existT _ command answer :: trace run
|
||||
end.
|
||||
End Run.
|
||||
|
||||
Module Temporal.
|
||||
Module All.
|
||||
Inductive t (P : Command.t -> Prop) : C.t -> Prop :=
|
||||
| Ret : t P C.Ret
|
||||
| Call : forall (c : Command.t) (h : Command.answer c -> C.t),
|
||||
P c -> (forall a, t P (h a)) ->
|
||||
t P (C.Call c h).
|
||||
End All.
|
||||
|
||||
Module One.
|
||||
Inductive t (P : Command.t -> Prop) : C.t -> Prop :=
|
||||
| CallThis : forall (c : Command.t) (h : Command.answer c -> C.t),
|
||||
P c ->
|
||||
t P (C.Call c h)
|
||||
| CallOther : forall (c : Command.t) (h : Command.answer c -> C.t),
|
||||
(forall a, t P (h a)) ->
|
||||
t P (C.Call c h).
|
||||
End One.
|
||||
|
||||
Module Then.
|
||||
Inductive t (P1 P2 : Command.t -> Prop) : C.t -> Prop :=
|
||||
| Ret : t P1 P2 C.Ret
|
||||
| Call : forall (c : Command.t) (h : Command.answer c -> C.t),
|
||||
(forall a, t P1 P2 (h a)) ->
|
||||
t P1 P2 (C.Call c h)
|
||||
| CallThen : forall (c : Command.t) (h : Command.answer c -> C.t),
|
||||
P1 c -> (forall a, One.t P2 (h a)) ->
|
||||
t P1 P2 (C.Call c h).
|
||||
End Then.
|
||||
End Temporal.
|
||||
|
||||
Module CardBeforeMoney.
|
||||
End CardBeforeMoney.
|
||||
@@ -1,419 +0,0 @@
|
||||
(** Sketch of the proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m
|
||||
|
||||
- preliminary results on the irrelevance of boundedness proofs
|
||||
- introduce the notion of finite cardinal |A|
|
||||
- prove that |{p:nat|p<=n}| = n
|
||||
- prove that |A| = n /\ |A| = m -> n = m if equality is decidable on A
|
||||
- prove that equality is decidable on A
|
||||
- conclude
|
||||
*)
|
||||
|
||||
(** * Preliminary results on [nat] and [le] *)
|
||||
|
||||
(** Proving axiom K on [nat] *)
|
||||
|
||||
Require Import Eqdep_dec.
|
||||
Require Import Arith.
|
||||
|
||||
Theorem eq_rect_eq_nat :
|
||||
forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h.
|
||||
Proof.
|
||||
intros.
|
||||
apply K_dec_set with (p := h).
|
||||
apply eq_nat_dec.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** Proving unicity of proofs of [(n<=m)%nat] *)
|
||||
|
||||
Scheme le_ind' := Induction for le Sort Prop.
|
||||
|
||||
Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
|
||||
Proof.
|
||||
induction p using le_ind'; intro q.
|
||||
replace (le_n n) with
|
||||
(eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
|
||||
2:reflexivity.
|
||||
generalize (refl_equal n).
|
||||
pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
|
||||
rewrite <- eq_rect_eq_nat; trivial.
|
||||
contradiction (le_Sn_n m); rewrite <- e; assumption.
|
||||
replace (le_S n m p) with
|
||||
(eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
|
||||
2:reflexivity.
|
||||
generalize (refl_equal (S m)).
|
||||
pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
|
||||
contradiction (le_Sn_n m); rewrite Heq; assumption.
|
||||
injection HeqS; intro Heq; generalize l HeqS.
|
||||
rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat.
|
||||
rewrite (IHp l0); reflexivity.
|
||||
Qed.
|
||||
|
||||
(** Proving irrelevance of boundedness proofs while building
|
||||
elements of interval *)
|
||||
|
||||
Lemma dep_pair_intro :
|
||||
forall (n x y:nat) (Hx : x<=n) (Hy : y<=n), x=y ->
|
||||
exist (fun x => x <= n) x Hx = exist (fun x => x <= n) y Hy.
|
||||
Proof.
|
||||
intros n x y Hx Hy Heq.
|
||||
generalize Hy.
|
||||
rewrite <- Heq.
|
||||
intros.
|
||||
rewrite (le_uniqueness_proof x n Hx Hy0).
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** * Proving that {p:nat|p<=n} = {p:nat|p<=m} -> n=m *)
|
||||
|
||||
(** Definition of having finite cardinality [n+1] for a set [A] *)
|
||||
|
||||
Definition card (A:Set) n :=
|
||||
exists f,
|
||||
(forall x:A, f x <= n) /\
|
||||
(forall x y:A, f x = f y -> x = y) /\
|
||||
(forall m, m <= n -> exists x:A, f x = m).
|
||||
|
||||
Require Import Arith.
|
||||
|
||||
(** Showing that the interval [0;n] has cardinality [n+1] *)
|
||||
|
||||
Theorem card_interval : forall n, card {x:nat|x<=n} n.
|
||||
Proof.
|
||||
intro n.
|
||||
exists (fun x:{x:nat|x<=n} => proj1_sig x).
|
||||
split.
|
||||
(* bounded *)
|
||||
intro x; apply (proj2_sig x).
|
||||
split.
|
||||
(* injectivity *)
|
||||
intros (p,Hp) (q,Hq).
|
||||
simpl.
|
||||
intro Hpq.
|
||||
apply dep_pair_intro; assumption.
|
||||
(* surjectivity *)
|
||||
intros m Hmn.
|
||||
exists (exist (fun x : nat => x <= n) m Hmn).
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** Showing that equality on the interval [0;n] is decidable *)
|
||||
|
||||
Lemma interval_dec :
|
||||
forall n (x y : {m:nat|m<=n}), {x=y}+{x<>y}.
|
||||
Proof.
|
||||
intros n (p,Hp).
|
||||
induction p; intros ([|q],Hq).
|
||||
left.
|
||||
apply dep_pair_intro.
|
||||
reflexivity.
|
||||
right.
|
||||
intro H; discriminate H.
|
||||
right.
|
||||
intro H; discriminate H.
|
||||
assert (Hp' : p <= n).
|
||||
apply le_Sn_le; assumption.
|
||||
assert (Hq' : q <= n).
|
||||
apply le_Sn_le; assumption.
|
||||
destruct (IHp Hp' (exist (fun m => m <= n) q Hq'))
|
||||
as [Heq|Hneq].
|
||||
left.
|
||||
injection Heq; intro Heq'.
|
||||
apply dep_pair_intro.
|
||||
apply eq_S.
|
||||
assumption.
|
||||
right.
|
||||
intro HeqS.
|
||||
injection HeqS; intro Heq.
|
||||
apply Hneq.
|
||||
apply dep_pair_intro.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(** Showing that the cardinality relation is functional on decidable sets *)
|
||||
|
||||
Lemma card_inj_aux :
|
||||
forall (A:Type) f g n,
|
||||
(forall x:A, f x <= 0) ->
|
||||
(forall x y:A, f x = f y -> x = y) ->
|
||||
(forall m, m <= S n -> exists x:A, g x = m)
|
||||
-> False.
|
||||
Proof.
|
||||
intros A f g n Hfbound Hfinj Hgsurj.
|
||||
destruct (Hgsurj (S n) (le_n _)) as (x,Hx).
|
||||
destruct (Hgsurj n (le_S _ _ (le_n _))) as (x',Hx').
|
||||
assert (Hfx : 0 = f x).
|
||||
apply le_n_O_eq.
|
||||
apply Hfbound.
|
||||
assert (Hfx' : 0 = f x').
|
||||
apply le_n_O_eq.
|
||||
apply Hfbound.
|
||||
assert (x=x').
|
||||
apply Hfinj.
|
||||
rewrite <- Hfx.
|
||||
rewrite <- Hfx'.
|
||||
reflexivity.
|
||||
rewrite H in Hx.
|
||||
rewrite Hx' in Hx.
|
||||
apply (n_Sn _ Hx).
|
||||
Qed.
|
||||
|
||||
(** For [dec_restrict], we use a lemma on the negation of equality
|
||||
that requires proof-irrelevance. It should be possible to avoid this
|
||||
lemma by generalizing over a first-order definition of [x<>y], say
|
||||
[neq] such that [{x=y}+{neq x y}] and [~(x=y /\ neq x y)]; for such
|
||||
[neq], unicity of proofs could be proven *)
|
||||
|
||||
Require Import Classical.
|
||||
Lemma neq_dep_intro :
|
||||
forall (A:Set) (z x y:A) (p:x<>z) (q:y<>z), x=y ->
|
||||
exist (fun x => x <> z) x p = exist (fun x => x <> z) y q.
|
||||
Proof.
|
||||
intros A z x y p q Heq.
|
||||
generalize q; clear q; rewrite <- Heq; intro q.
|
||||
rewrite (proof_irrelevance _ p q); reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma dec_restrict :
|
||||
forall (A:Set),
|
||||
(forall x y :A, {x=y}+{x<>y}) ->
|
||||
forall z (x y :{a:A|a<>z}), {x=y}+{x<>y}.
|
||||
Proof.
|
||||
intros A Hdec z (x,Hx) (y,Hy).
|
||||
destruct (Hdec x y) as [Heq|Hneq].
|
||||
left; apply neq_dep_intro; assumption.
|
||||
right; intro Heq; injection Heq; exact Hneq.
|
||||
Qed.
|
||||
|
||||
Lemma pred_inj : forall n m,
|
||||
0 <> n -> 0 <> m -> pred m = pred n -> m = n.
|
||||
Proof.
|
||||
destruct n.
|
||||
intros m H; destruct H; reflexivity.
|
||||
destruct m.
|
||||
intros _ H; destruct H; reflexivity.
|
||||
simpl; intros _ _ H.
|
||||
rewrite H.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma le_neq_lt : forall n m, n <= m -> n<>m -> n < m.
|
||||
Proof.
|
||||
intros n m Hle Hneq.
|
||||
destruct (le_lt_eq_dec n m Hle).
|
||||
assumption.
|
||||
contradiction.
|
||||
Qed.
|
||||
|
||||
Lemma inj_restrict :
|
||||
forall (A:Set) (f:A->nat) x y z,
|
||||
(forall x y : A, f x = f y -> x = y)
|
||||
-> x <> z -> f y < f z -> f z <= f x
|
||||
-> pred (f x) = f y
|
||||
-> False.
|
||||
|
||||
(* Search error sans le type de f !! *)
|
||||
Proof.
|
||||
intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
|
||||
assert (f z <> f x).
|
||||
apply sym_not_eq.
|
||||
intro Heqf.
|
||||
apply Hneqx.
|
||||
apply Hfinj.
|
||||
assumption.
|
||||
assert (f x = S (f y)).
|
||||
assert (0 < f x).
|
||||
apply le_lt_trans with (f z).
|
||||
apply le_O_n.
|
||||
apply le_neq_lt; assumption.
|
||||
apply pred_inj.
|
||||
apply O_S.
|
||||
apply lt_O_neq; assumption.
|
||||
exact Heq.
|
||||
assert (f z <= f y).
|
||||
destruct (le_lt_or_eq _ _ Hfx).
|
||||
apply lt_n_Sm_le.
|
||||
rewrite <- H0.
|
||||
assumption.
|
||||
contradiction Hneqx.
|
||||
symmetry.
|
||||
apply Hfinj.
|
||||
assumption.
|
||||
contradiction (lt_not_le (f y) (f z)).
|
||||
Qed.
|
||||
|
||||
Theorem card_inj : forall m n (A:Set),
|
||||
(forall x y :A, {x=y}+{x<>y}) ->
|
||||
card A m -> card A n -> m = n.
|
||||
Proof.
|
||||
induction m; destruct n;
|
||||
intros A Hdec
|
||||
(f,(Hfbound,(Hfinj,Hfsurj)))
|
||||
(g,(Hgbound,(Hginj,Hgsurj))).
|
||||
(* 0/0 *)
|
||||
reflexivity.
|
||||
(* 0/Sm *)
|
||||
destruct (card_inj_aux _ _ _ _ Hfbound Hfinj Hgsurj).
|
||||
(* Sn/0 *)
|
||||
destruct (card_inj_aux _ _ _ _ Hgbound Hginj Hfsurj).
|
||||
(* Sn/Sm *)
|
||||
destruct (Hgsurj (S n) (le_n _)) as (xSn,HSnx).
|
||||
rewrite IHm with (n:=n) (A := {x:A|x<>xSn}).
|
||||
reflexivity.
|
||||
(* decidability of eq on {x:A|x<>xSm} *)
|
||||
apply dec_restrict.
|
||||
assumption.
|
||||
(* cardinality of {x:A|x<>xSn} is m *)
|
||||
pose (f' := fun x' : {x:A|x<>xSn} =>
|
||||
let (x,Hneq) := x' in
|
||||
if le_lt_dec (f xSn) (f x)
|
||||
then pred (f x)
|
||||
else f x).
|
||||
exists f'.
|
||||
split.
|
||||
(* f' is bounded *)
|
||||
unfold f'.
|
||||
intros (x,_).
|
||||
destruct (le_lt_dec (f xSn) (f x)) as [Hle|Hge].
|
||||
change m with (pred (S m)).
|
||||
apply le_pred.
|
||||
apply Hfbound.
|
||||
apply le_S_n.
|
||||
apply le_trans with (f xSn).
|
||||
exact Hge.
|
||||
apply Hfbound.
|
||||
split.
|
||||
(* f' is injective *)
|
||||
unfold f'.
|
||||
intros (x,Hneqx) (y,Hneqy) Heqf'.
|
||||
destruct (le_lt_dec (f xSn) (f x)) as [Hlefx|Hgefx];
|
||||
destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
|
||||
(* f xSn <= f x et f xSn <= f y *)
|
||||
assert (Heq : x = y).
|
||||
apply Hfinj.
|
||||
assert (f xSn <> f y).
|
||||
apply sym_not_eq.
|
||||
intro Heqf.
|
||||
apply Hneqy.
|
||||
apply Hfinj.
|
||||
assumption.
|
||||
assert (0 < f y).
|
||||
apply le_lt_trans with (f xSn).
|
||||
apply le_O_n.
|
||||
apply le_neq_lt; assumption.
|
||||
assert (f xSn <> f x).
|
||||
apply sym_not_eq.
|
||||
intro Heqf.
|
||||
apply Hneqx.
|
||||
apply Hfinj.
|
||||
assumption.
|
||||
assert (0 < f x).
|
||||
apply le_lt_trans with (f xSn).
|
||||
apply le_O_n.
|
||||
apply le_neq_lt; assumption.
|
||||
apply pred_inj.
|
||||
apply lt_O_neq; assumption.
|
||||
apply lt_O_neq; assumption.
|
||||
assumption.
|
||||
apply neq_dep_intro; assumption.
|
||||
(* f y < f xSn <= f x *)
|
||||
destruct (inj_restrict A f x y xSn); assumption.
|
||||
(* f x < f xSn <= f y *)
|
||||
symmetry in Heqf'.
|
||||
destruct (inj_restrict A f y x xSn); assumption.
|
||||
(* f x < f xSn et f y < f xSn *)
|
||||
assert (Heq : x=y).
|
||||
apply Hfinj; assumption.
|
||||
apply neq_dep_intro; assumption.
|
||||
(* f' is surjective *)
|
||||
intros p Hlep.
|
||||
destruct (le_lt_dec (f xSn) p) as [Hle|Hlt].
|
||||
(* case f xSn <= p *)
|
||||
destruct (Hfsurj (S p) (le_n_S _ _ Hlep)) as (x,Hx).
|
||||
assert (Hneq : x <> xSn).
|
||||
intro Heqx.
|
||||
rewrite Heqx in Hx.
|
||||
rewrite Hx in Hle.
|
||||
apply le_Sn_n with p; assumption.
|
||||
exists (exist (fun a => a<>xSn) x Hneq).
|
||||
unfold f'.
|
||||
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
|
||||
rewrite Hx; reflexivity.
|
||||
rewrite Hx in Hlt'.
|
||||
contradiction (le_not_lt (f xSn) p).
|
||||
apply lt_trans with (S p).
|
||||
apply lt_n_Sn.
|
||||
assumption.
|
||||
(* case p < f xSn *)
|
||||
destruct (Hfsurj p (le_S _ _ Hlep)) as (x,Hx).
|
||||
assert (Hneq : x <> xSn).
|
||||
intro Heqx.
|
||||
rewrite Heqx in Hx.
|
||||
rewrite Hx in Hlt.
|
||||
apply (lt_irrefl p).
|
||||
assumption.
|
||||
exists (exist (fun a => a<>xSn) x Hneq).
|
||||
unfold f'.
|
||||
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
|
||||
rewrite Hx in Hle'.
|
||||
contradiction (lt_irrefl p).
|
||||
apply lt_le_trans with (f xSn); assumption.
|
||||
assumption.
|
||||
(* cardinality of {x:A|x<>xSn} is n *)
|
||||
pose (g' := fun x' : {x:A|x<>xSn} =>
|
||||
let (x,Hneq) := x' in
|
||||
if Hdec x xSn then 0 else g x).
|
||||
exists g'.
|
||||
split.
|
||||
(* g is bounded *)
|
||||
unfold g'.
|
||||
intros (x,_).
|
||||
destruct (Hdec x xSn) as [_|Hneq].
|
||||
apply le_O_n.
|
||||
assert (Hle_gx:=Hgbound x).
|
||||
destruct (le_lt_or_eq _ _ Hle_gx).
|
||||
apply lt_n_Sm_le.
|
||||
assumption.
|
||||
contradiction Hneq.
|
||||
apply Hginj.
|
||||
rewrite HSnx.
|
||||
assumption.
|
||||
split.
|
||||
(* g is injective *)
|
||||
unfold g'.
|
||||
intros (x,Hneqx) (y,Hneqy) Heqg'.
|
||||
destruct (Hdec x xSn) as [Heqx|_].
|
||||
contradiction Hneqx.
|
||||
destruct (Hdec y xSn) as [Heqy|_].
|
||||
contradiction Hneqy.
|
||||
assert (Heq : x=y).
|
||||
apply Hginj; assumption.
|
||||
apply neq_dep_intro; assumption.
|
||||
(* g is surjective *)
|
||||
intros p Hlep.
|
||||
destruct (Hgsurj p (le_S _ _ Hlep)) as (x,Hx).
|
||||
assert (Hneq : x<>xSn).
|
||||
intro Heq.
|
||||
rewrite Heq in Hx.
|
||||
rewrite Hx in HSnx.
|
||||
rewrite HSnx in Hlep.
|
||||
contradiction (le_Sn_n _ Hlep).
|
||||
exists (exist (fun a => a<>xSn) x Hneq).
|
||||
simpl.
|
||||
destruct (Hdec x xSn) as [Heqx|_].
|
||||
contradiction Hneq.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(** Conclusion *)
|
||||
|
||||
Theorem interval_discr :
|
||||
forall n m, {p:nat|p<=n} = {p:nat|p<=m} -> n=m.
|
||||
Proof.
|
||||
intros n m Heq.
|
||||
apply card_inj with (A := {p:nat|p<=n}).
|
||||
apply interval_dec.
|
||||
apply card_interval.
|
||||
rewrite Heq.
|
||||
apply card_interval.
|
||||
Qed.
|
||||
24
samples/EBNF/grammar.ebnf
Normal file
24
samples/EBNF/grammar.ebnf
Normal file
@@ -0,0 +1,24 @@
|
||||
(*
|
||||
Source: https://github.com/sunjay/lion
|
||||
License: MIT
|
||||
*)
|
||||
|
||||
Statement = ( NamedFunction | AnonymousFunction | Assignment | Expr ) , "\n" ;
|
||||
Expr = AnonymousFunction | Term | "(" , Expr , ")" ,
|
||||
{ AnonymousFunction | Term | "(" , Expr , ")" } ;
|
||||
|
||||
Assignment = Symbol , "=" , Expr ;
|
||||
|
||||
AnonymousFunction = "\" , FunctionRHS ;
|
||||
NamedFunction = Symbol , FunctionRHS ;
|
||||
|
||||
FunctionRHS = FunctionParams , "=" , FunctionBody ;
|
||||
FunctionParams = FunctionParam , { FunctionParam } ;
|
||||
FunctionParam = Term ;
|
||||
FunctionBody = Expr ;
|
||||
|
||||
Term = Symbol | Number | SingleWordString ;
|
||||
SingleWordString = '"' , Symbol , '"' ;
|
||||
(* Symbol is a collection of valid symbol characters, not defined here *)
|
||||
(* Number is a valid numeric literal *)
|
||||
|
||||
40
samples/EBNF/material.ebnf
Normal file
40
samples/EBNF/material.ebnf
Normal file
@@ -0,0 +1,40 @@
|
||||
(*
|
||||
Source: https://github.com/io7m/jsom0
|
||||
License: ISC
|
||||
*)
|
||||
|
||||
name =
|
||||
"name" , string , ";" ;
|
||||
|
||||
diffuse =
|
||||
"diffuse" , real , real , real , ";" ;
|
||||
|
||||
ambient =
|
||||
"ambient" , real , real , real , ";" ;
|
||||
|
||||
specular =
|
||||
"specular" , real , real , real , real , ";" ;
|
||||
|
||||
shininess =
|
||||
"shininess" , real , ";" ;
|
||||
|
||||
alpha =
|
||||
"alpha" , real , ";" ;
|
||||
|
||||
mapping =
|
||||
"map_chrome" | "map_uv" ;
|
||||
|
||||
texture =
|
||||
"texture" , string , real , mapping , ";" ;
|
||||
|
||||
material =
|
||||
"material" , ";" ,
|
||||
name ,
|
||||
diffuse ,
|
||||
ambient ,
|
||||
specular ,
|
||||
shininess ,
|
||||
alpha ,
|
||||
[ texture ] ,
|
||||
"end" , ";" ;
|
||||
|
||||
61
samples/EBNF/object.ebnf
Normal file
61
samples/EBNF/object.ebnf
Normal file
@@ -0,0 +1,61 @@
|
||||
(*
|
||||
Source: https://github.com/io7m/jsom0
|
||||
License: ISC
|
||||
*)
|
||||
|
||||
vertex_p3n3_name =
|
||||
"vertex_p3n3" ;
|
||||
|
||||
vertex_p3n3t2_name =
|
||||
"vertex_p3n3t2" ;
|
||||
|
||||
vertex_type =
|
||||
vertex_p3n3_name | vertex_p3n3t2_name ;
|
||||
|
||||
vertex_position =
|
||||
"position" , real , real , real , ";" ;
|
||||
|
||||
vertex_normal =
|
||||
"normal" , real , real , real , ";" ;
|
||||
|
||||
vertex_uv =
|
||||
"uv" , real , real , ";" ;
|
||||
|
||||
vertex_p3n3 =
|
||||
vertex_p3n3_name , vertex_position , vertex_normal , "end" , ";" ;
|
||||
|
||||
vertex_p3n3t2 =
|
||||
vertex_p3n3t2_name , vertex_position , vertex_normal , vertex_uv , "end" , ";" ;
|
||||
|
||||
vertex =
|
||||
vertex_p3n3 | vertex_p3n3t2 ;
|
||||
|
||||
vertex_array =
|
||||
"array" , positive , vertex_type , { vertex } , "end" , ";" ;
|
||||
|
||||
vertices =
|
||||
"vertices" , ";" , vertex_array , "end" , ";" ;
|
||||
|
||||
triangle =
|
||||
"triangle" , natural , natural , natural , ";" ;
|
||||
|
||||
triangle_array =
|
||||
"array" , positive, "triangle" , { triangle } , "end" , ";" ;
|
||||
|
||||
triangles =
|
||||
"triangles" , ";" , triangle_array , "end" , ";" ;
|
||||
|
||||
name =
|
||||
"name" , string , ";" ;
|
||||
|
||||
material_name =
|
||||
"material_name" , string , ";" ;
|
||||
|
||||
object =
|
||||
"object" , ";" ,
|
||||
name ,
|
||||
material_name ,
|
||||
vertices ,
|
||||
triangles ,
|
||||
"end" , ";" ;
|
||||
|
||||
20
samples/EBNF/types.ebnf
Normal file
20
samples/EBNF/types.ebnf
Normal file
@@ -0,0 +1,20 @@
|
||||
(*
|
||||
Source: https://github.com/io7m/jsom0
|
||||
License: ISC
|
||||
*)
|
||||
|
||||
digit_without_zero =
|
||||
"1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
|
||||
|
||||
digit =
|
||||
"0" | digit_without_zero ;
|
||||
|
||||
positive =
|
||||
digit_without_zero , { digit } ;
|
||||
|
||||
natural =
|
||||
"0" | positive ;
|
||||
|
||||
real =
|
||||
[ "-" ] , digit , [ "." , { digit } ] ;
|
||||
|
||||
8
samples/Smalltalk/baselineDependency.st
Normal file
8
samples/Smalltalk/baselineDependency.st
Normal file
@@ -0,0 +1,8 @@
|
||||
dependencies
|
||||
neoJSON: spec
|
||||
spec
|
||||
configuration: 'NeoJSON'
|
||||
with: [ spec
|
||||
className: 'ConfigurationOfNeoJSON';
|
||||
version: #stable;
|
||||
repository: 'http://smalltalkhub.com/mc/SvenVanCaekenberghe/Neo/main' ]
|
||||
8
samples/Smalltalk/categories.st
Normal file
8
samples/Smalltalk/categories.st
Normal file
@@ -0,0 +1,8 @@
|
||||
SystemOrganization addCategory: #ChartJs!
|
||||
SystemOrganization addCategory: 'ChartJs-Component'!
|
||||
SystemOrganization addCategory: 'ChartJs-Demo'!
|
||||
SystemOrganization addCategory: 'ChartJs-Exception'!
|
||||
SystemOrganization addCategory: 'ChartJs-Library'!
|
||||
SystemOrganization addCategory: 'ChartJs-Model'!
|
||||
SystemOrganization addCategory: 'ChartJs-Style'!
|
||||
SystemOrganization addCategory: 'ChartJs-Types'!
|
||||
9
samples/Smalltalk/renderSeasideExampleOn..st
Normal file
9
samples/Smalltalk/renderSeasideExampleOn..st
Normal file
@@ -0,0 +1,9 @@
|
||||
rendering
|
||||
renderTitleId: divId on: html
|
||||
^ html div
|
||||
id: #title , divId;
|
||||
class: #aClass;
|
||||
with: [
|
||||
html heading
|
||||
level3;
|
||||
with: self data title ]
|
||||
11
samples/Smalltalk/scriptWithPragma.st
Normal file
11
samples/Smalltalk/scriptWithPragma.st
Normal file
@@ -0,0 +1,11 @@
|
||||
helpers
|
||||
installGitFileTree
|
||||
"GitFileTree is the tool we will use to commit on GitHub."
|
||||
|
||||
<script>
|
||||
Metacello new
|
||||
baseline: 'FileTree';
|
||||
repository:
|
||||
'github://dalehenrich/filetree:pharo' , SystemVersion current dottedMajorMinor
|
||||
, '_dev/repository';
|
||||
load: 'Git'
|
||||
3
samples/Smalltalk/smallMethod.st
Normal file
3
samples/Smalltalk/smallMethod.st
Normal file
@@ -0,0 +1,3 @@
|
||||
ChartJs
|
||||
dataFunction
|
||||
^ 'bars'
|
||||
@@ -8,7 +8,7 @@ ROOT = File.expand_path("../../", __FILE__)
|
||||
# Break a repository URL into its separate components
|
||||
def parse_url(input)
|
||||
hosts = "github\.com|bitbucket\.org|gitlab\.com"
|
||||
|
||||
|
||||
# HTTPS/HTTP link pointing to recognised hosts
|
||||
if input =~ /^(?:https?:\/\/)?(?:[^.@]+@)?(?:www\.)?(#{hosts})\/([^\/]+)\/([^\/]+)/i
|
||||
{ host: $1.downcase(), user: $2, repo: $3.sub(/\.git$/, "") }
|
||||
@@ -91,3 +91,6 @@ exit 1 if $?.exitstatus > 0
|
||||
|
||||
log "Confirming license"
|
||||
`script/licensed --module "#{repo_new}"`
|
||||
|
||||
log "Updating grammar documentation in vendor/REAEDME.md"
|
||||
`script list-grammars`
|
||||
|
||||
101
script/list-grammars
Executable file
101
script/list-grammars
Executable file
@@ -0,0 +1,101 @@
|
||||
#!/usr/bin/env ruby
|
||||
|
||||
require "linguist"
|
||||
require "json"
|
||||
require "yaml"
|
||||
|
||||
class GrammarList
|
||||
|
||||
ROOT = File.expand_path "../../", __FILE__
|
||||
|
||||
def initialize
|
||||
@submodules = load_submodules()
|
||||
@sources = load_sources()
|
||||
@language_names = load_languages()
|
||||
end
|
||||
|
||||
# Load .gitmodules
|
||||
def load_submodules
|
||||
submodules = {}
|
||||
submodule_file = File.read("#{ROOT}/.gitmodules")
|
||||
pattern = /^\[submodule\s*"([^"]+)"\]$\n((?:^(?!\[).+(?:\n|$))+)/is
|
||||
submodule_file.scan(pattern) do |id, attr|
|
||||
submod = {}
|
||||
submod[:path] = $1 if attr =~ /^\s*path\s*=\s*(.+)$/
|
||||
submod[:url] = $1 if attr =~ /^\s*url\s*=\s*(.+)$/
|
||||
submod[:url].gsub!(/\.git$/, "")
|
||||
submod[:short] = shorten(submod[:url])
|
||||
submodules["#{id}"] = submod
|
||||
end
|
||||
submodules
|
||||
end
|
||||
|
||||
# Grab the name of each language, sorted case-insensitively
|
||||
def load_languages
|
||||
Linguist::Language.all.map(&:name).sort do |a, b|
|
||||
a.downcase() <=> b.downcase()
|
||||
end
|
||||
end
|
||||
|
||||
# Load grammars.yml
|
||||
def load_sources
|
||||
sources = {}
|
||||
grammars = YAML.load_file("#{ROOT}/grammars.yml")
|
||||
grammars.each do |path, scopes|
|
||||
scopes.each { |scope| sources[scope] = path }
|
||||
end
|
||||
sources
|
||||
end
|
||||
|
||||
# Shorten a repository URL
|
||||
def shorten(url)
|
||||
if url =~ /^https?:\/\/(?:www\.)?github\.com\/([^\/]+\/[^\/]+)/i
|
||||
$1
|
||||
elsif url =~ /^https?:\/\/(?:www\.)?(bitbucket|gitlab)\.(?:com|org)\/([^\/]+\/[^\/]+)/i
|
||||
"#{$1.downcase()}:#{$2}"
|
||||
else
|
||||
url.replace(/^https?:\/\/(?:www\.)?/i, "")
|
||||
end
|
||||
end
|
||||
|
||||
# Markdown: Generate grammar list
|
||||
def to_markdown
|
||||
markdown = ""
|
||||
@language_names.each do |item|
|
||||
lang = Linguist::Language["#{item}"]
|
||||
scope = lang.tm_scope
|
||||
next if scope == "none"
|
||||
path = @sources[scope] || scope
|
||||
case path
|
||||
when "https://bitbucket.org/Clams/sublimesystemverilog/get/default.tar.gz"
|
||||
short_url = "bitbucket:Clams/sublimesystemverilog"
|
||||
long_url = "https://bitbucket.org/Clams/sublimesystemverilog"
|
||||
when "http://svn.edgewall.org/repos/genshi/contrib/textmate/Genshi.tmbundle/Syntaxes/Markup%20Template%20%28XML%29.tmLanguage"
|
||||
short_url = "genshi.edgewall.org/query"
|
||||
long_url = "https://genshi.edgewall.org/query"
|
||||
when "vendor/grammars/oz-tmbundle/Syntaxes/Oz.tmLanguage"
|
||||
short_url = "eregon/oz-tmbundle"
|
||||
long_url = "https://github.com/eregon/oz-tmbundle"
|
||||
else
|
||||
submodule = @submodules[@sources[scope].chomp("/")]
|
||||
next unless submodule
|
||||
short_url = submodule[:short]
|
||||
long_url = submodule[:url]
|
||||
end
|
||||
markdown += "- **#{item}:** [#{short_url}](#{long_url})\n"
|
||||
end
|
||||
|
||||
markdown
|
||||
end
|
||||
|
||||
# Update the file displaying the reader-friendly list of grammar repos
|
||||
def update_readme
|
||||
readme = "#{ROOT}/vendor/README.md"
|
||||
preamble = File.read(readme).match(/\A.+?<!--.+?-->\n/ms)
|
||||
list = self.to_markdown
|
||||
File.write(readme, preamble.to_s + list)
|
||||
end
|
||||
end
|
||||
|
||||
list = GrammarList.new
|
||||
list.update_readme()
|
||||
1
test/fixtures/go/food_vendor/candy.go
vendored
Normal file
1
test/fixtures/go/food_vendor/candy.go
vendored
Normal file
@@ -0,0 +1 @@
|
||||
// empty file for testing that paths with vendor in them don't get ingored
|
||||
@@ -216,6 +216,11 @@ class TestBlob < Minitest::Test
|
||||
# Generated by Zephir
|
||||
assert !sample_blob_memory("Zephir/Router.zep").generated?
|
||||
|
||||
# Go vendored dependencies
|
||||
refute sample_blob("vendor/vendor.json").generated?
|
||||
assert sample_blob("vendor/github.com/kr/s3/sign.go").generated?
|
||||
refute fixture_blob("go/food_vendor/candy.go").generated?
|
||||
|
||||
# Cython-generated C/C++
|
||||
assert sample_blob_memory("C/sgd_fast.c").generated?
|
||||
assert sample_blob_memory("C++/wrapper_inner.cpp").generated?
|
||||
|
||||
@@ -42,6 +42,11 @@ class TestGenerated < Minitest::Test
|
||||
generated_sample_without_loading_data("Dummy/foo.xcworkspacedata")
|
||||
generated_sample_without_loading_data("Dummy/foo.xcuserstate")
|
||||
|
||||
# Go-specific vendored paths
|
||||
generated_sample_without_loading_data("go/vendor/github.com/foo.go")
|
||||
generated_sample_without_loading_data("go/vendor/golang.org/src/foo.c")
|
||||
generated_sample_without_loading_data("go/vendor/gopkg.in/some/nested/path/foo.go")
|
||||
|
||||
# .NET designer file
|
||||
generated_sample_without_loading_data("Dummu/foo.designer.cs")
|
||||
|
||||
|
||||
368
vendor/README.md
vendored
Normal file
368
vendor/README.md
vendored
Normal file
@@ -0,0 +1,368 @@
|
||||
Grammar index
|
||||
=============
|
||||
|
||||
This is a list of grammars that Linguist selects to provide syntax highlighting on GitHub. If you've encountered an error with highlighting, please find the grammar in the list below and report it to the appropriate repository.
|
||||
|
||||
<!-- Everything below this line is auto-generated by script/list-grammars. Manual edits will be lost -->
|
||||
- **1C Enterprise:** [xDrivenDevelopment/atom-language-1c-bsl](https://github.com/xDrivenDevelopment/atom-language-1c-bsl)
|
||||
- **ABAP:** [pvl/abap.tmbundle](https://github.com/pvl/abap.tmbundle)
|
||||
- **ActionScript:** [simongregory/actionscript3-tmbundle](https://github.com/simongregory/actionscript3-tmbundle)
|
||||
- **Ada:** [textmate/ada.tmbundle](https://github.com/textmate/ada.tmbundle)
|
||||
- **Agda:** [mokus0/Agda.tmbundle](https://github.com/mokus0/Agda.tmbundle)
|
||||
- **AGS Script:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **Alloy:** [macekond/Alloy.tmbundle](https://github.com/macekond/Alloy.tmbundle)
|
||||
- **Alpine Abuild:** [atom/language-shellscript](https://github.com/atom/language-shellscript)
|
||||
- **AMPL:** [ampl/sublime-ampl](https://github.com/ampl/sublime-ampl)
|
||||
- **Ant Build System:** [textmate/ant.tmbundle](https://github.com/textmate/ant.tmbundle)
|
||||
- **ANTLR:** [textmate/antlr.tmbundle](https://github.com/textmate/antlr.tmbundle)
|
||||
- **ApacheConf:** [textmate/apache.tmbundle](https://github.com/textmate/apache.tmbundle)
|
||||
- **Apex:** [textmate/java.tmbundle](https://github.com/textmate/java.tmbundle)
|
||||
- **API Blueprint:** [apiaryio/api-blueprint-sublime-plugin](https://github.com/apiaryio/api-blueprint-sublime-plugin)
|
||||
- **APL:** [Alhadis/language-apl](https://github.com/Alhadis/language-apl)
|
||||
- **Apollo Guidance Computer:** [Alhadis/language-agc](https://github.com/Alhadis/language-agc)
|
||||
- **AppleScript:** [textmate/applescript.tmbundle](https://github.com/textmate/applescript.tmbundle)
|
||||
- **Arduino:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **AsciiDoc:** [zuckschwerdt/asciidoc.tmbundle](https://github.com/zuckschwerdt/asciidoc.tmbundle)
|
||||
- **ASN.1:** [ajLangley12/language-asn1](https://github.com/ajLangley12/language-asn1)
|
||||
- **ASP:** [textmate/asp.tmbundle](https://github.com/textmate/asp.tmbundle)
|
||||
- **AspectJ:** [pchaigno/sublime-aspectj](https://github.com/pchaigno/sublime-aspectj)
|
||||
- **Assembly:** [Nessphoro/sublimeassembly](https://github.com/Nessphoro/sublimeassembly)
|
||||
- **ATS:** [steinwaywhw/ats-mode-sublimetext](https://github.com/steinwaywhw/ats-mode-sublimetext)
|
||||
- **AutoHotkey:** [ahkscript/SublimeAutoHotkey](https://github.com/ahkscript/SublimeAutoHotkey)
|
||||
- **AutoIt:** [AutoIt/SublimeAutoItScript](https://github.com/AutoIt/SublimeAutoItScript)
|
||||
- **Awk:** [github-linguist/awk-sublime](https://github.com/github-linguist/awk-sublime)
|
||||
- **Batchfile:** [mmims/language-batchfile](https://github.com/mmims/language-batchfile)
|
||||
- **Befunge:** [johanasplund/sublime-befunge](https://github.com/johanasplund/sublime-befunge)
|
||||
- **Bison:** [textmate/bison.tmbundle](https://github.com/textmate/bison.tmbundle)
|
||||
- **Blade:** [jawee/language-blade](https://github.com/jawee/language-blade)
|
||||
- **BlitzBasic:** [textmate/blitzmax.tmbundle](https://github.com/textmate/blitzmax.tmbundle)
|
||||
- **BlitzMax:** [textmate/blitzmax.tmbundle](https://github.com/textmate/blitzmax.tmbundle)
|
||||
- **Bluespec:** [thotypous/sublime-bsv](https://github.com/thotypous/sublime-bsv)
|
||||
- **Boo:** [Shammah/boo-sublime](https://github.com/Shammah/boo-sublime)
|
||||
- **Brainfuck:** [Drako/SublimeBrainfuck](https://github.com/Drako/SublimeBrainfuck)
|
||||
- **Brightscript:** [cmink/BrightScript.tmbundle](https://github.com/cmink/BrightScript.tmbundle)
|
||||
- **Bro:** [bro/bro-sublime](https://github.com/bro/bro-sublime)
|
||||
- **C:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **C#:** [atom/language-csharp](https://github.com/atom/language-csharp)
|
||||
- **C++:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **C-ObjDump:** [nanoant/assembly.tmbundle](https://github.com/nanoant/assembly.tmbundle)
|
||||
- **C2hs Haskell:** [atom-haskell/language-haskell](https://github.com/atom-haskell/language-haskell)
|
||||
- **Cap'n Proto:** [textmate/capnproto.tmbundle](https://github.com/textmate/capnproto.tmbundle)
|
||||
- **CartoCSS:** [yohanboniface/carto-atom](https://github.com/yohanboniface/carto-atom)
|
||||
- **Ceylon:** [jeancharles-roger/ceylon-sublimetext](https://github.com/jeancharles-roger/ceylon-sublimetext)
|
||||
- **Chapel:** [chapel-lang/chapel-tmbundle](https://github.com/chapel-lang/chapel-tmbundle)
|
||||
- **ChucK:** [textmate/java.tmbundle](https://github.com/textmate/java.tmbundle)
|
||||
- **Cirru:** [Cirru/sublime-cirru](https://github.com/Cirru/sublime-cirru)
|
||||
- **Clarion:** [fushnisoft/SublimeClarion](https://github.com/fushnisoft/SublimeClarion)
|
||||
- **Clean:** [timjs/atom-language-clean](https://github.com/timjs/atom-language-clean)
|
||||
- **Click:** [stenverbois/language-click](https://github.com/stenverbois/language-click)
|
||||
- **CLIPS:** [psicomante/CLIPS-sublime](https://github.com/psicomante/CLIPS-sublime)
|
||||
- **Clojure:** [atom/language-clojure](https://github.com/atom/language-clojure)
|
||||
- **CMake:** [textmate/cmake.tmbundle](https://github.com/textmate/cmake.tmbundle)
|
||||
- **COBOL:** [bitbucket:bitlang/sublime_cobol](https://bitbucket.org/bitlang/sublime_cobol)
|
||||
- **CoffeeScript:** [atom/language-coffee-script](https://github.com/atom/language-coffee-script)
|
||||
- **ColdFusion:** [SublimeText/ColdFusion](https://github.com/SublimeText/ColdFusion)
|
||||
- **ColdFusion CFC:** [SublimeText/ColdFusion](https://github.com/SublimeText/ColdFusion)
|
||||
- **COLLADA:** [textmate/xml.tmbundle](https://github.com/textmate/xml.tmbundle)
|
||||
- **Common Lisp:** [textmate/lisp.tmbundle](https://github.com/textmate/lisp.tmbundle)
|
||||
- **Component Pascal:** [textmate/pascal.tmbundle](https://github.com/textmate/pascal.tmbundle)
|
||||
- **Cool:** [anunayk/cool-tmbundle](https://github.com/anunayk/cool-tmbundle)
|
||||
- **Coq:** [mkolosick/Sublime-Coq](https://github.com/mkolosick/Sublime-Coq)
|
||||
- **Cpp-ObjDump:** [nanoant/assembly.tmbundle](https://github.com/nanoant/assembly.tmbundle)
|
||||
- **Creole:** [Siddley/Creole](https://github.com/Siddley/Creole)
|
||||
- **Crystal:** [atom-crystal/language-crystal](https://github.com/atom-crystal/language-crystal)
|
||||
- **CSON:** [atom/language-coffee-script](https://github.com/atom/language-coffee-script)
|
||||
- **Csound:** [nwhetsell/language-csound](https://github.com/nwhetsell/language-csound)
|
||||
- **Csound Document:** [nwhetsell/language-csound](https://github.com/nwhetsell/language-csound)
|
||||
- **Csound Score:** [nwhetsell/language-csound](https://github.com/nwhetsell/language-csound)
|
||||
- **CSS:** [textmate/css.tmbundle](https://github.com/textmate/css.tmbundle)
|
||||
- **Cucumber:** [cucumber/cucumber-tmbundle](https://github.com/cucumber/cucumber-tmbundle)
|
||||
- **Cuda:** [harrism/sublimetext-cuda-cpp](https://github.com/harrism/sublimetext-cuda-cpp)
|
||||
- **Cycript:** [atom/language-javascript](https://github.com/atom/language-javascript)
|
||||
- **Cython:** [textmate/cython.tmbundle](https://github.com/textmate/cython.tmbundle)
|
||||
- **D:** [textmate/d.tmbundle](https://github.com/textmate/d.tmbundle)
|
||||
- **D-ObjDump:** [nanoant/assembly.tmbundle](https://github.com/nanoant/assembly.tmbundle)
|
||||
- **Dart:** [guillermooo/dart-sublime-bundle](https://github.com/guillermooo/dart-sublime-bundle)
|
||||
- **desktop:** [Mailaender/desktop.tmbundle](https://github.com/Mailaender/desktop.tmbundle)
|
||||
- **Diff:** [textmate/diff.tmbundle](https://github.com/textmate/diff.tmbundle)
|
||||
- **DM:** [PJB3005/atomic-dreams](https://github.com/PJB3005/atomic-dreams)
|
||||
- **DNS Zone:** [sixty4k/st2-zonefile](https://github.com/sixty4k/st2-zonefile)
|
||||
- **Dockerfile:** [asbjornenge/Docker.tmbundle](https://github.com/asbjornenge/Docker.tmbundle)
|
||||
- **DTrace:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **Dylan:** [textmate/dylan.tmbundle](https://github.com/textmate/dylan.tmbundle)
|
||||
- **Eagle:** [textmate/xml.tmbundle](https://github.com/textmate/xml.tmbundle)
|
||||
- **eC:** [ecere/ec.tmbundle](https://github.com/ecere/ec.tmbundle)
|
||||
- **Ecere Projects:** [textmate/json.tmbundle](https://github.com/textmate/json.tmbundle)
|
||||
- **ECLiPSe:** [alnkpa/sublimeprolog](https://github.com/alnkpa/sublimeprolog)
|
||||
- **edn:** [atom/language-clojure](https://github.com/atom/language-clojure)
|
||||
- **Eiffel:** [textmate/eiffel.tmbundle](https://github.com/textmate/eiffel.tmbundle)
|
||||
- **EJS:** [gregory-m/ejs-tmbundle](https://github.com/gregory-m/ejs-tmbundle)
|
||||
- **Elixir:** [elixir-lang/elixir-tmbundle](https://github.com/elixir-lang/elixir-tmbundle)
|
||||
- **Emacs Lisp:** [Alhadis/language-emacs-lisp](https://github.com/Alhadis/language-emacs-lisp)
|
||||
- **EmberScript:** [atom/language-coffee-script](https://github.com/atom/language-coffee-script)
|
||||
- **EQ:** [atom/language-csharp](https://github.com/atom/language-csharp)
|
||||
- **Erlang:** [textmate/erlang.tmbundle](https://github.com/textmate/erlang.tmbundle)
|
||||
- **F#:** [fsprojects/atom-fsharp](https://github.com/fsprojects/atom-fsharp)
|
||||
- **Factor:** [slavapestov/factor](https://github.com/slavapestov/factor)
|
||||
- **Fancy:** [fancy-lang/fancy-tmbundle](https://github.com/fancy-lang/fancy-tmbundle)
|
||||
- **fish:** [l15n/fish-tmbundle](https://github.com/l15n/fish-tmbundle)
|
||||
- **Forth:** [textmate/forth.tmbundle](https://github.com/textmate/forth.tmbundle)
|
||||
- **FORTRAN:** [textmate/fortran.tmbundle](https://github.com/textmate/fortran.tmbundle)
|
||||
- **FreeMarker:** [freemarker/FreeMarker.tmbundle](https://github.com/freemarker/FreeMarker.tmbundle)
|
||||
- **Frege:** [atom-haskell/language-haskell](https://github.com/atom-haskell/language-haskell)
|
||||
- **G-code:** [robotmaster/sublime-text-syntax-highlighting](https://github.com/robotmaster/sublime-text-syntax-highlighting)
|
||||
- **Game Maker Language:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **GAP:** [dhowden/gap-tmbundle](https://github.com/dhowden/gap-tmbundle)
|
||||
- **GAS:** [Nessphoro/sublimeassembly](https://github.com/Nessphoro/sublimeassembly)
|
||||
- **GCC Machine Description:** [textmate/lisp.tmbundle](https://github.com/textmate/lisp.tmbundle)
|
||||
- **GDB:** [quarnster/SublimeGDB](https://github.com/quarnster/SublimeGDB)
|
||||
- **GDScript:** [beefsack/GDScript-sublime](https://github.com/beefsack/GDScript-sublime)
|
||||
- **Genshi:** [genshi.edgewall.org/query](https://genshi.edgewall.org/query)
|
||||
- **Gentoo Ebuild:** [atom/language-shellscript](https://github.com/atom/language-shellscript)
|
||||
- **Gentoo Eclass:** [atom/language-shellscript](https://github.com/atom/language-shellscript)
|
||||
- **Gettext Catalog:** [textmate/gettext.tmbundle](https://github.com/textmate/gettext.tmbundle)
|
||||
- **GLSL:** [euler0/sublime-glsl](https://github.com/euler0/sublime-glsl)
|
||||
- **Glyph:** [textmate/tcl.tmbundle](https://github.com/textmate/tcl.tmbundle)
|
||||
- **Gnuplot:** [mattfoster/gnuplot-tmbundle](https://github.com/mattfoster/gnuplot-tmbundle)
|
||||
- **Go:** [AlanQuatermain/go-tmbundle](https://github.com/AlanQuatermain/go-tmbundle)
|
||||
- **Golo:** [TypeUnsafe/sublime-golo](https://github.com/TypeUnsafe/sublime-golo)
|
||||
- **Gosu:** [jpcamara/Textmate-Gosu-Bundle](https://github.com/jpcamara/Textmate-Gosu-Bundle)
|
||||
- **Grace:** [zmthy/grace-tmbundle](https://github.com/zmthy/grace-tmbundle)
|
||||
- **Gradle:** [alkemist/gradle.tmbundle](https://github.com/alkemist/gradle.tmbundle)
|
||||
- **Grammatical Framework:** [atom-haskell/language-haskell](https://github.com/atom-haskell/language-haskell)
|
||||
- **GraphQL:** [rmosolgo/language-graphql](https://github.com/rmosolgo/language-graphql)
|
||||
- **Graphviz (DOT):** [textmate/graphviz.tmbundle](https://github.com/textmate/graphviz.tmbundle)
|
||||
- **Groff:** [Alhadis/language-roff](https://github.com/Alhadis/language-roff)
|
||||
- **Groovy:** [textmate/groovy.tmbundle](https://github.com/textmate/groovy.tmbundle)
|
||||
- **Groovy Server Pages:** [textmate/java.tmbundle](https://github.com/textmate/java.tmbundle)
|
||||
- **Hack:** [textmate/php.tmbundle](https://github.com/textmate/php.tmbundle)
|
||||
- **Haml:** [textmate/ruby-haml.tmbundle](https://github.com/textmate/ruby-haml.tmbundle)
|
||||
- **Handlebars:** [daaain/Handlebars](https://github.com/daaain/Handlebars)
|
||||
- **Harbour:** [hernad/atom-language-harbour](https://github.com/hernad/atom-language-harbour)
|
||||
- **Haskell:** [atom-haskell/language-haskell](https://github.com/atom-haskell/language-haskell)
|
||||
- **Haxe:** [clemos/haxe-sublime-bundle](https://github.com/clemos/haxe-sublime-bundle)
|
||||
- **HCL:** [aroben/ruby.tmbundle](https://github.com/aroben/ruby.tmbundle)
|
||||
- **HTML:** [textmate/html.tmbundle](https://github.com/textmate/html.tmbundle)
|
||||
- **HTML+Django:** [textmate/python-django.tmbundle](https://github.com/textmate/python-django.tmbundle)
|
||||
- **HTML+ECR:** [atom-crystal/language-crystal](https://github.com/atom-crystal/language-crystal)
|
||||
- **HTML+EEX:** [elixir-lang/elixir-tmbundle](https://github.com/elixir-lang/elixir-tmbundle)
|
||||
- **HTML+ERB:** [aroben/ruby.tmbundle](https://github.com/aroben/ruby.tmbundle)
|
||||
- **HTML+PHP:** [textmate/php.tmbundle](https://github.com/textmate/php.tmbundle)
|
||||
- **HTTP:** [httpspec/sublime-highlighting](https://github.com/httpspec/sublime-highlighting)
|
||||
- **Hy:** [rwtolbert/language-hy](https://github.com/rwtolbert/language-hy)
|
||||
- **IDL:** [mgalloy/idl.tmbundle](https://github.com/mgalloy/idl.tmbundle)
|
||||
- **Idris:** [idris-hackers/idris-sublime](https://github.com/idris-hackers/idris-sublime)
|
||||
- **Inform 7:** [erkyrath/language-inform7](https://github.com/erkyrath/language-inform7)
|
||||
- **INI:** [textmate/ini.tmbundle](https://github.com/textmate/ini.tmbundle)
|
||||
- **Io:** [textmate/io.tmbundle](https://github.com/textmate/io.tmbundle)
|
||||
- **Ioke:** [vic/ioke-outdated](https://github.com/vic/ioke-outdated)
|
||||
- **Isabelle:** [lsf37/Isabelle.tmbundle](https://github.com/lsf37/Isabelle.tmbundle)
|
||||
- **Isabelle ROOT:** [lsf37/Isabelle.tmbundle](https://github.com/lsf37/Isabelle.tmbundle)
|
||||
- **J:** [bcj/JSyntax](https://github.com/bcj/JSyntax)
|
||||
- **Jade:** [davidrios/jade-tmbundle](https://github.com/davidrios/jade-tmbundle)
|
||||
- **Jasmin:** [atmarksharp/jasmin-sublime](https://github.com/atmarksharp/jasmin-sublime)
|
||||
- **Java:** [textmate/java.tmbundle](https://github.com/textmate/java.tmbundle)
|
||||
- **Java Server Pages:** [textmate/java.tmbundle](https://github.com/textmate/java.tmbundle)
|
||||
- **JavaScript:** [atom/language-javascript](https://github.com/atom/language-javascript)
|
||||
- **JFlex:** [jflex-de/jflex.tmbundle](https://github.com/jflex-de/jflex.tmbundle)
|
||||
- **JSON:** [textmate/json.tmbundle](https://github.com/textmate/json.tmbundle)
|
||||
- **JSON5:** [atom/language-javascript](https://github.com/atom/language-javascript)
|
||||
- **JSONiq:** [wcandillon/language-jsoniq](https://github.com/wcandillon/language-jsoniq)
|
||||
- **JSONLD:** [atom/language-javascript](https://github.com/atom/language-javascript)
|
||||
- **JSX:** [github-linguist/language-babel](https://github.com/github-linguist/language-babel)
|
||||
- **Julia:** [nanoant/Julia.tmbundle](https://github.com/nanoant/Julia.tmbundle)
|
||||
- **Jupyter Notebook:** [textmate/json.tmbundle](https://github.com/textmate/json.tmbundle)
|
||||
- **Kit:** [textmate/html.tmbundle](https://github.com/textmate/html.tmbundle)
|
||||
- **Kotlin:** [vkostyukov/kotlin-sublime-package](https://github.com/vkostyukov/kotlin-sublime-package)
|
||||
- **LabVIEW:** [textmate/xml.tmbundle](https://github.com/textmate/xml.tmbundle)
|
||||
- **Lasso:** [bfad/Sublime-Lasso](https://github.com/bfad/Sublime-Lasso)
|
||||
- **Latte:** [textmate/php-smarty.tmbundle](https://github.com/textmate/php-smarty.tmbundle)
|
||||
- **Lean:** [leanprover/Lean.tmbundle](https://github.com/leanprover/Lean.tmbundle)
|
||||
- **Less:** [atom/language-less](https://github.com/atom/language-less)
|
||||
- **LFE:** [textmate/lisp.tmbundle](https://github.com/textmate/lisp.tmbundle)
|
||||
- **LilyPond:** [textmate/lilypond.tmbundle](https://github.com/textmate/lilypond.tmbundle)
|
||||
- **Liquid:** [bastilian/validcode-textmate-bundles](https://github.com/bastilian/validcode-textmate-bundles)
|
||||
- **Literate CoffeeScript:** [atom/language-coffee-script](https://github.com/atom/language-coffee-script)
|
||||
- **Literate Haskell:** [atom-haskell/language-haskell](https://github.com/atom-haskell/language-haskell)
|
||||
- **LiveScript:** [paulmillr/LiveScript.tmbundle](https://github.com/paulmillr/LiveScript.tmbundle)
|
||||
- **LLVM:** [whitequark/llvm.tmbundle](https://github.com/whitequark/llvm.tmbundle)
|
||||
- **Logos:** [Cykey/Sublime-Logos](https://github.com/Cykey/Sublime-Logos)
|
||||
- **Logtalk:** [textmate/logtalk.tmbundle](https://github.com/textmate/logtalk.tmbundle)
|
||||
- **LookML:** [atom/language-yaml](https://github.com/atom/language-yaml)
|
||||
- **LoomScript:** [ambethia/Sublime-Loom](https://github.com/ambethia/Sublime-Loom)
|
||||
- **LSL:** [textmate/secondlife-lsl.tmbundle](https://github.com/textmate/secondlife-lsl.tmbundle)
|
||||
- **Lua:** [textmate/lua.tmbundle](https://github.com/textmate/lua.tmbundle)
|
||||
- **Makefile:** [textmate/make.tmbundle](https://github.com/textmate/make.tmbundle)
|
||||
- **Mako:** [marconi/mako-tmbundle](https://github.com/marconi/mako-tmbundle)
|
||||
- **Markdown:** [atom/language-gfm](https://github.com/atom/language-gfm)
|
||||
- **Mask:** [tenbits/sublime-mask](https://github.com/tenbits/sublime-mask)
|
||||
- **Mathematica:** [shadanan/mathematica-tmbundle](https://github.com/shadanan/mathematica-tmbundle)
|
||||
- **Matlab:** [textmate/matlab.tmbundle](https://github.com/textmate/matlab.tmbundle)
|
||||
- **Maven POM:** [textmate/maven.tmbundle](https://github.com/textmate/maven.tmbundle)
|
||||
- **Max:** [textmate/json.tmbundle](https://github.com/textmate/json.tmbundle)
|
||||
- **MAXScript:** [Alhadis/language-maxscript](https://github.com/Alhadis/language-maxscript)
|
||||
- **MediaWiki:** [textmate/mediawiki.tmbundle](https://github.com/textmate/mediawiki.tmbundle)
|
||||
- **Mercury:** [sebgod/mercury-tmlanguage](https://github.com/sebgod/mercury-tmlanguage)
|
||||
- **Metal:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **Mirah:** [aroben/ruby.tmbundle](https://github.com/aroben/ruby.tmbundle)
|
||||
- **Modelica:** [BorisChumichev/modelicaSublimeTextPackage](https://github.com/BorisChumichev/modelicaSublimeTextPackage)
|
||||
- **Modula-2:** [harogaston/Sublime-Modula-2](https://github.com/harogaston/Sublime-Modula-2)
|
||||
- **Monkey:** [gingerbeardman/monkey.tmbundle](https://github.com/gingerbeardman/monkey.tmbundle)
|
||||
- **MoonScript:** [leafo/moonscript-tmbundle](https://github.com/leafo/moonscript-tmbundle)
|
||||
- **MQL4:** [mqsoft/MQL5-sublime](https://github.com/mqsoft/MQL5-sublime)
|
||||
- **MQL5:** [mqsoft/MQL5-sublime](https://github.com/mqsoft/MQL5-sublime)
|
||||
- **MTML:** [textmate/html.tmbundle](https://github.com/textmate/html.tmbundle)
|
||||
- **mupad:** [ccreutzig/sublime-MuPAD](https://github.com/ccreutzig/sublime-MuPAD)
|
||||
- **NCL:** [rpavlick/language-ncl](https://github.com/rpavlick/language-ncl)
|
||||
- **Nemerle:** [textmate/nemerle.tmbundle](https://github.com/textmate/nemerle.tmbundle)
|
||||
- **nesC:** [cdwilson/nesC.tmbundle](https://github.com/cdwilson/nesC.tmbundle)
|
||||
- **NetLinx:** [amclain/sublime-netlinx](https://github.com/amclain/sublime-netlinx)
|
||||
- **NetLinx+ERB:** [amclain/sublime-netlinx](https://github.com/amclain/sublime-netlinx)
|
||||
- **NetLogo:** [textmate/lisp.tmbundle](https://github.com/textmate/lisp.tmbundle)
|
||||
- **NewLisp:** [textmate/lisp.tmbundle](https://github.com/textmate/lisp.tmbundle)
|
||||
- **Nginx:** [brandonwamboldt/sublime-nginx](https://github.com/brandonwamboldt/sublime-nginx)
|
||||
- **Nimrod:** [Varriount/NimLime](https://github.com/Varriount/NimLime)
|
||||
- **Ninja:** [textmate/ninja.tmbundle](https://github.com/textmate/ninja.tmbundle)
|
||||
- **Nit:** [R4PaSs/Sublime-Nit](https://github.com/R4PaSs/Sublime-Nit)
|
||||
- **Nix:** [wmertens/sublime-nix](https://github.com/wmertens/sublime-nix)
|
||||
- **NSIS:** [github-linguist/NSIS](https://github.com/github-linguist/NSIS)
|
||||
- **Nu:** [jsallis/nu.tmbundle](https://github.com/jsallis/nu.tmbundle)
|
||||
- **ObjDump:** [nanoant/assembly.tmbundle](https://github.com/nanoant/assembly.tmbundle)
|
||||
- **Objective-C:** [textmate/objective-c.tmbundle](https://github.com/textmate/objective-c.tmbundle)
|
||||
- **Objective-C++:** [textmate/objective-c.tmbundle](https://github.com/textmate/objective-c.tmbundle)
|
||||
- **Objective-J:** [textmate/javascript-objective-j.tmbundle](https://github.com/textmate/javascript-objective-j.tmbundle)
|
||||
- **OCaml:** [textmate/ocaml.tmbundle](https://github.com/textmate/ocaml.tmbundle)
|
||||
- **ooc:** [nilium/ooc.tmbundle](https://github.com/nilium/ooc.tmbundle)
|
||||
- **Opa:** [mads379/opa.tmbundle](https://github.com/mads379/opa.tmbundle)
|
||||
- **Opal:** [artifactz/sublime-opal](https://github.com/artifactz/sublime-opal)
|
||||
- **OpenCL:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **OpenEdge ABL:** [jfairbank/Sublime-Text-2-OpenEdge-ABL](https://github.com/jfairbank/Sublime-Text-2-OpenEdge-ABL)
|
||||
- **OpenRC runscript:** [atom/language-shellscript](https://github.com/atom/language-shellscript)
|
||||
- **Ox:** [andreashetland/sublime-text-ox](https://github.com/andreashetland/sublime-text-ox)
|
||||
- **Oz:** [eregon/oz-tmbundle](https://github.com/eregon/oz-tmbundle)
|
||||
- **Papyrus:** [Kapiainen/SublimePapyrus](https://github.com/Kapiainen/SublimePapyrus)
|
||||
- **Parrot Internal Representation:** [textmate/parrot.tmbundle](https://github.com/textmate/parrot.tmbundle)
|
||||
- **Pascal:** [textmate/pascal.tmbundle](https://github.com/textmate/pascal.tmbundle)
|
||||
- **PAWN:** [Southclaw/pawn-sublime-language](https://github.com/Southclaw/pawn-sublime-language)
|
||||
- **Perl:** [textmate/perl.tmbundle](https://github.com/textmate/perl.tmbundle)
|
||||
- **Perl6:** [MadcapJake/language-perl6fe](https://github.com/MadcapJake/language-perl6fe)
|
||||
- **PHP:** [textmate/php.tmbundle](https://github.com/textmate/php.tmbundle)
|
||||
- **Pic:** [Alhadis/language-roff](https://github.com/Alhadis/language-roff)
|
||||
- **PicoLisp:** [textmate/lisp.tmbundle](https://github.com/textmate/lisp.tmbundle)
|
||||
- **PigLatin:** [goblindegook/sublime-text-pig-latin](https://github.com/goblindegook/sublime-text-pig-latin)
|
||||
- **Pike:** [hww3/pike-textmate](https://github.com/hww3/pike-textmate)
|
||||
- **PLpgSQL:** [textmate/sql.tmbundle](https://github.com/textmate/sql.tmbundle)
|
||||
- **PogoScript:** [featurist/PogoScript.tmbundle](https://github.com/featurist/PogoScript.tmbundle)
|
||||
- **Pony:** [CausalityLtd/sublime-pony](https://github.com/CausalityLtd/sublime-pony)
|
||||
- **PostScript:** [textmate/postscript.tmbundle](https://github.com/textmate/postscript.tmbundle)
|
||||
- **POV-Ray SDL:** [c-lipka/language-povray](https://github.com/c-lipka/language-povray)
|
||||
- **PowerShell:** [SublimeText/PowerShell](https://github.com/SublimeText/PowerShell)
|
||||
- **Processing:** [textmate/processing.tmbundle](https://github.com/textmate/processing.tmbundle)
|
||||
- **Prolog:** [alnkpa/sublimeprolog](https://github.com/alnkpa/sublimeprolog)
|
||||
- **Propeller Spin:** [bitbased/sublime-spintools](https://github.com/bitbased/sublime-spintools)
|
||||
- **Protocol Buffer:** [michaeledgar/protobuf-tmbundle](https://github.com/michaeledgar/protobuf-tmbundle)
|
||||
- **Puppet:** [russCloak/SublimePuppet](https://github.com/russCloak/SublimePuppet)
|
||||
- **PureScript:** [purescript-contrib/atom-language-purescript](https://github.com/purescript-contrib/atom-language-purescript)
|
||||
- **Python:** [MagicStack/MagicPython](https://github.com/MagicStack/MagicPython)
|
||||
- **Python traceback:** [atom/language-python](https://github.com/atom/language-python)
|
||||
- **QMake:** [textmate/cpp-qt.tmbundle](https://github.com/textmate/cpp-qt.tmbundle)
|
||||
- **QML:** [skozlovf/Sublime-QML](https://github.com/skozlovf/Sublime-QML)
|
||||
- **R:** [textmate/r.tmbundle](https://github.com/textmate/r.tmbundle)
|
||||
- **Racket:** [soegaard/racket-highlight-for-github](https://github.com/soegaard/racket-highlight-for-github)
|
||||
- **RAML:** [atom/language-yaml](https://github.com/atom/language-yaml)
|
||||
- **RDoc:** [joshaven/RDoc.tmbundle](https://github.com/joshaven/RDoc.tmbundle)
|
||||
- **REALbasic:** [angryant0007/VBDotNetSyntax](https://github.com/angryant0007/VBDotNetSyntax)
|
||||
- **Rebol:** [Oldes/Sublime-REBOL](https://github.com/Oldes/Sublime-REBOL)
|
||||
- **Red:** [Oldes/Sublime-Red](https://github.com/Oldes/Sublime-Red)
|
||||
- **Ren'Py:** [williamd1k0/language-renpy](https://github.com/williamd1k0/language-renpy)
|
||||
- **reStructuredText:** [Lukasa/language-restructuredtext](https://github.com/Lukasa/language-restructuredtext)
|
||||
- **REXX:** [mblocker/rexx-sublime](https://github.com/mblocker/rexx-sublime)
|
||||
- **RHTML:** [aroben/ruby.tmbundle](https://github.com/aroben/ruby.tmbundle)
|
||||
- **RMarkdown:** [atom/language-gfm](https://github.com/atom/language-gfm)
|
||||
- **RobotFramework:** [shellderp/sublime-robot-plugin](https://github.com/shellderp/sublime-robot-plugin)
|
||||
- **Rouge:** [atom/language-clojure](https://github.com/atom/language-clojure)
|
||||
- **RPM Spec:** [waveclaw/language-rpm-spec](https://github.com/waveclaw/language-rpm-spec)
|
||||
- **Ruby:** [aroben/ruby.tmbundle](https://github.com/aroben/ruby.tmbundle)
|
||||
- **RUNOFF:** [Alhadis/language-roff](https://github.com/Alhadis/language-roff)
|
||||
- **Rust:** [jhasse/sublime-rust](https://github.com/jhasse/sublime-rust)
|
||||
- **Sage:** [MagicStack/MagicPython](https://github.com/MagicStack/MagicPython)
|
||||
- **SaltStack:** [saltstack/atom-salt](https://github.com/saltstack/atom-salt)
|
||||
- **SAS:** [rpardee/sas.tmbundle](https://github.com/rpardee/sas.tmbundle)
|
||||
- **Sass:** [nathos/sass-textmate-bundle](https://github.com/nathos/sass-textmate-bundle)
|
||||
- **Scala:** [mads379/scala.tmbundle](https://github.com/mads379/scala.tmbundle)
|
||||
- **Scaml:** [scalate/Scalate.tmbundle](https://github.com/scalate/Scalate.tmbundle)
|
||||
- **Scheme:** [textmate/scheme.tmbundle](https://github.com/textmate/scheme.tmbundle)
|
||||
- **Scilab:** [textmate/scilab.tmbundle](https://github.com/textmate/scilab.tmbundle)
|
||||
- **SCSS:** [MarioRicalde/SCSS.tmbundle](https://github.com/MarioRicalde/SCSS.tmbundle)
|
||||
- **Shell:** [atom/language-shellscript](https://github.com/atom/language-shellscript)
|
||||
- **ShellSession:** [atom/language-shellscript](https://github.com/atom/language-shellscript)
|
||||
- **Slash:** [slash-lang/Slash.tmbundle](https://github.com/slash-lang/Slash.tmbundle)
|
||||
- **Slim:** [slim-template/ruby-slim.tmbundle](https://github.com/slim-template/ruby-slim.tmbundle)
|
||||
- **Smali:** [ShaneWilton/sublime-smali](https://github.com/ShaneWilton/sublime-smali)
|
||||
- **Smalltalk:** [tomas-stefano/smalltalk-tmbundle](https://github.com/tomas-stefano/smalltalk-tmbundle)
|
||||
- **Smarty:** [textmate/php-smarty.tmbundle](https://github.com/textmate/php-smarty.tmbundle)
|
||||
- **SMT:** [SRI-CSL/SMT.tmbundle](https://github.com/SRI-CSL/SMT.tmbundle)
|
||||
- **SourcePawn:** [github-linguist/sublime-sourcepawn](https://github.com/github-linguist/sublime-sourcepawn)
|
||||
- **SPARQL:** [peta/turtle.tmbundle](https://github.com/peta/turtle.tmbundle)
|
||||
- **SQF:** [JonBons/Sublime-SQF-Language](https://github.com/JonBons/Sublime-SQF-Language)
|
||||
- **SQL:** [textmate/sql.tmbundle](https://github.com/textmate/sql.tmbundle)
|
||||
- **SQLPL:** [textmate/sql.tmbundle](https://github.com/textmate/sql.tmbundle)
|
||||
- **Squirrel:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **SRecode Template:** [textmate/lisp.tmbundle](https://github.com/textmate/lisp.tmbundle)
|
||||
- **Stan:** [jrnold/atom-language-stan](https://github.com/jrnold/atom-language-stan)
|
||||
- **Standard ML:** [textmate/standard-ml.tmbundle](https://github.com/textmate/standard-ml.tmbundle)
|
||||
- **Stata:** [pschumm/Stata.tmbundle](https://github.com/pschumm/Stata.tmbundle)
|
||||
- **STON:** [tomas-stefano/smalltalk-tmbundle](https://github.com/tomas-stefano/smalltalk-tmbundle)
|
||||
- **Stylus:** [billymoon/Stylus](https://github.com/billymoon/Stylus)
|
||||
- **Sublime Text Config:** [atom/language-javascript](https://github.com/atom/language-javascript)
|
||||
- **SubRip Text:** [314eter/atom-language-srt](https://github.com/314eter/atom-language-srt)
|
||||
- **SuperCollider:** [supercollider/language-supercollider](https://github.com/supercollider/language-supercollider)
|
||||
- **SVG:** [textmate/xml.tmbundle](https://github.com/textmate/xml.tmbundle)
|
||||
- **Swift:** [textmate/swift.tmbundle](https://github.com/textmate/swift.tmbundle)
|
||||
- **SystemVerilog:** [bitbucket:Clams/sublimesystemverilog](https://bitbucket.org/Clams/sublimesystemverilog)
|
||||
- **Tcl:** [textmate/tcl.tmbundle](https://github.com/textmate/tcl.tmbundle)
|
||||
- **Tcsh:** [atom/language-shellscript](https://github.com/atom/language-shellscript)
|
||||
- **Tea:** [pferruggiaro/sublime-tea](https://github.com/pferruggiaro/sublime-tea)
|
||||
- **Terra:** [pyk/sublime-terra](https://github.com/pyk/sublime-terra)
|
||||
- **TeX:** [textmate/latex.tmbundle](https://github.com/textmate/latex.tmbundle)
|
||||
- **Thrift:** [textmate/thrift.tmbundle](https://github.com/textmate/thrift.tmbundle)
|
||||
- **TLA:** [agentultra/TLAGrammar](https://github.com/agentultra/TLAGrammar)
|
||||
- **TOML:** [textmate/toml.tmbundle](https://github.com/textmate/toml.tmbundle)
|
||||
- **Turing:** [Alhadis/language-turing](https://github.com/Alhadis/language-turing)
|
||||
- **Turtle:** [peta/turtle.tmbundle](https://github.com/peta/turtle.tmbundle)
|
||||
- **Twig:** [Anomareh/PHP-Twig.tmbundle](https://github.com/Anomareh/PHP-Twig.tmbundle)
|
||||
- **TXL:** [MikeHoffert/Sublime-Text-TXL-syntax](https://github.com/MikeHoffert/Sublime-Text-TXL-syntax)
|
||||
- **TypeScript:** [Microsoft/TypeScript-Sublime-Plugin](https://github.com/Microsoft/TypeScript-Sublime-Plugin)
|
||||
- **Unified Parallel C:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **Unity3D Asset:** [atom/language-yaml](https://github.com/atom/language-yaml)
|
||||
- **Uno:** [atom/language-csharp](https://github.com/atom/language-csharp)
|
||||
- **UnrealScript:** [textmate/java.tmbundle](https://github.com/textmate/java.tmbundle)
|
||||
- **UrWeb:** [gwalborn/UrWeb-Language-Definition](https://github.com/gwalborn/UrWeb-Language-Definition)
|
||||
- **Vala:** [technosophos/Vala-TMBundle](https://github.com/technosophos/Vala-TMBundle)
|
||||
- **VCL:** [brandonwamboldt/sublime-varnish](https://github.com/brandonwamboldt/sublime-varnish)
|
||||
- **Verilog:** [textmate/verilog.tmbundle](https://github.com/textmate/verilog.tmbundle)
|
||||
- **VHDL:** [textmate/vhdl.tmbundle](https://github.com/textmate/vhdl.tmbundle)
|
||||
- **VimL:** [Alhadis/language-viml](https://github.com/Alhadis/language-viml)
|
||||
- **Visual Basic:** [angryant0007/VBDotNetSyntax](https://github.com/angryant0007/VBDotNetSyntax)
|
||||
- **Volt:** [textmate/d.tmbundle](https://github.com/textmate/d.tmbundle)
|
||||
- **Vue:** [vuejs/vue-syntax-highlight](https://github.com/vuejs/vue-syntax-highlight)
|
||||
- **Wavefront Material:** [Alhadis/language-wavefront](https://github.com/Alhadis/language-wavefront)
|
||||
- **Wavefront Object:** [Alhadis/language-wavefront](https://github.com/Alhadis/language-wavefront)
|
||||
- **Web Ontology Language:** [textmate/xml.tmbundle](https://github.com/textmate/xml.tmbundle)
|
||||
- **WebIDL:** [andik/IDL-Syntax](https://github.com/andik/IDL-Syntax)
|
||||
- **wisp:** [atom/language-clojure](https://github.com/atom/language-clojure)
|
||||
- **World of Warcraft Addon Data:** [nebularg/language-toc-wow](https://github.com/nebularg/language-toc-wow)
|
||||
- **X10:** [x10-lang/x10-highlighting](https://github.com/x10-lang/x10-highlighting)
|
||||
- **xBase:** [hernad/atom-language-harbour](https://github.com/hernad/atom-language-harbour)
|
||||
- **XC:** [graymalkin/xc.tmbundle](https://github.com/graymalkin/xc.tmbundle)
|
||||
- **XML:** [textmate/xml.tmbundle](https://github.com/textmate/xml.tmbundle)
|
||||
- **Xojo:** [angryant0007/VBDotNetSyntax](https://github.com/angryant0007/VBDotNetSyntax)
|
||||
- **XProc:** [textmate/xml.tmbundle](https://github.com/textmate/xml.tmbundle)
|
||||
- **XQuery:** [wcandillon/language-jsoniq](https://github.com/wcandillon/language-jsoniq)
|
||||
- **XS:** [textmate/c.tmbundle](https://github.com/textmate/c.tmbundle)
|
||||
- **XSLT:** [textmate/xml.tmbundle](https://github.com/textmate/xml.tmbundle)
|
||||
- **Xtend:** [staltz/SublimeXtend](https://github.com/staltz/SublimeXtend)
|
||||
- **Yacc:** [textmate/bison.tmbundle](https://github.com/textmate/bison.tmbundle)
|
||||
- **YAML:** [atom/language-yaml](https://github.com/atom/language-yaml)
|
||||
- **YANG:** [DzonyKalafut/language-yang](https://github.com/DzonyKalafut/language-yang)
|
||||
- **Zephir:** [vmg/zephir-sublime](https://github.com/vmg/zephir-sublime)
|
||||
1
vendor/grammars/ABNF.tmbundle
vendored
Submodule
1
vendor/grammars/ABNF.tmbundle
vendored
Submodule
Submodule vendor/grammars/ABNF.tmbundle added at 86a961c91b
1
vendor/grammars/EBNF.tmbundle
vendored
Submodule
1
vendor/grammars/EBNF.tmbundle
vendored
Submodule
Submodule vendor/grammars/EBNF.tmbundle added at 13efe9156b
206
vendor/licenses/grammar/ABNF.tmbundle.txt
vendored
Normal file
206
vendor/licenses/grammar/ABNF.tmbundle.txt
vendored
Normal file
@@ -0,0 +1,206 @@
|
||||
---
|
||||
type: grammar
|
||||
name: ABNF.tmbundle
|
||||
license: apache-2.0
|
||||
---
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "{}"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2016 René Schwaiger
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
24
vendor/licenses/grammar/EBNF.tmbundle.txt
vendored
Normal file
24
vendor/licenses/grammar/EBNF.tmbundle.txt
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
---
|
||||
type: grammar
|
||||
name: EBNF.tmbundle
|
||||
license: mit
|
||||
---
|
||||
Copyright (C) 2012 by Arne Schroppe
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
Reference in New Issue
Block a user