Merge pull request #1604 from geoff-codes/#!--"

Comment styles; don't choke on `#!/usr/bin/env foo=bar`
This commit is contained in:
Arfon Smith
2015-04-01 15:18:40 -05:00
6 changed files with 1520 additions and 0 deletions

View File

@@ -2930,6 +2930,7 @@ Shell:
- .fcgi
- .ksh
- .tmux
- .tool
- .zsh
interpreters:
- bash

View File

@@ -22,8 +22,10 @@ module Linguist
# Start state on token, ignore anything till the next newline
SINGLE_LINE_COMMENTS = [
'//', # C
'--', # Ada, Haskell, AppleScript
'#', # Ruby
'%', # Tex
'"', # Vim
]
# Start state on opening token, ignore anything until the closing
@@ -130,6 +132,9 @@ module Linguist
# extract_shebang("#!/usr/bin/env node")
# # => "node"
#
# extract_shebang("#!/usr/bin/env A=B foo=bar awk -f")
# # => "awk"
#
# Returns String token or nil it couldn't be parsed.
def extract_shebang(data)
s = StringScanner.new(data)
@@ -138,6 +143,7 @@ module Linguist
script = path.split('/').last
if script == 'env'
s.scan(/\s+/)
s.scan(/.*=[^\s]+\s+/)
script = s.scan(/\S+/)
end
script = script[/[^\d]+/, 0] if script

114
samples/Haskell/HsColour.hs Normal file
View File

@@ -0,0 +1,114 @@
-- | This is a library which colourises Haskell code.
-- It currently has six output formats:
--
-- * ANSI terminal codes
--
-- * LaTeX macros
--
-- * HTML 3.2 with font tags
--
-- * HTML 4.01 with external CSS.
--
-- * XHTML 1.0 with internal CSS.
--
-- * mIRC chat client colour codes.
--
module Language.Haskell.HsColour (Output(..), ColourPrefs(..),
hscolour) where
import Language.Haskell.HsColour.Colourise (ColourPrefs(..))
import qualified Language.Haskell.HsColour.TTY as TTY
import qualified Language.Haskell.HsColour.HTML as HTML
import qualified Language.Haskell.HsColour.CSS as CSS
import qualified Language.Haskell.HsColour.ACSS as ACSS
import qualified Language.Haskell.HsColour.InlineCSS as ICSS
import qualified Language.Haskell.HsColour.LaTeX as LaTeX
import qualified Language.Haskell.HsColour.MIRC as MIRC
import Data.List(mapAccumL, isPrefixOf)
import Data.Maybe
import Language.Haskell.HsColour.Output
--import Debug.Trace
-- | Colourise Haskell source code with the given output format.
hscolour :: Output -- ^ Output format.
-> ColourPrefs -- ^ Colour preferences (for formats that support them).
-> Bool -- ^ Whether to include anchors.
-> Bool -- ^ Whether output document is partial or complete.
-> String -- ^ Title for output.
-> Bool -- ^ Whether input document is literate haskell or not
-> String -- ^ Haskell source code.
-> String -- ^ Coloured Haskell source code.
hscolour output pref anchor partial title False =
(if partial then id else top'n'tail output title) .
hscolour' output pref anchor
hscolour output pref anchor partial title True =
(if partial then id else top'n'tail output title) .
concatMap chunk . joinL . classify . inlines
where
chunk (Code c) = hscolour' output pref anchor c
chunk (Lit c) = c
-- | The actual colourising worker, despatched on the chosen output format.
hscolour' :: Output -- ^ Output format.
-> ColourPrefs -- ^ Colour preferences (for formats that support them)
-> Bool -- ^ Whether to include anchors.
-> String -- ^ Haskell source code.
-> String -- ^ Coloured Haskell source code.
hscolour' TTY pref _ = TTY.hscolour pref
hscolour' (TTYg tt) pref _ = TTY.hscolourG tt pref
hscolour' MIRC pref _ = MIRC.hscolour pref
hscolour' LaTeX pref _ = LaTeX.hscolour pref
hscolour' HTML pref anchor = HTML.hscolour pref anchor
hscolour' CSS _ anchor = CSS.hscolour anchor
hscolour' ICSS pref anchor = ICSS.hscolour pref anchor
hscolour' ACSS _ anchor = ACSS.hscolour anchor
-- | Choose the right headers\/footers, depending on the output format.
top'n'tail :: Output -- ^ Output format
-> String -- ^ Title for output
-> (String->String) -- ^ Output transformer
top'n'tail TTY _ = id
top'n'tail (TTYg _) _ = id
top'n'tail MIRC _ = id
top'n'tail LaTeX title = LaTeX.top'n'tail title
top'n'tail HTML title = HTML.top'n'tail title
top'n'tail CSS title = CSS.top'n'tail title
top'n'tail ICSS title = ICSS.top'n'tail title
top'n'tail ACSS title = CSS.top'n'tail title
-- | Separating literate files into code\/comment chunks.
data Lit = Code {unL :: String} | Lit {unL :: String} deriving (Show)
-- Re-implementation of 'lines', for better efficiency (but decreased laziness).
-- Also, importantly, accepts non-standard DOS and Mac line ending characters.
-- And retains the trailing '\n' character in each resultant string.
inlines :: String -> [String]
inlines s = lines' s id
where
lines' [] acc = [acc []]
lines' ('\^M':'\n':s) acc = acc ['\n'] : lines' s id -- DOS
--lines' ('\^M':s) acc = acc ['\n'] : lines' s id -- MacOS
lines' ('\n':s) acc = acc ['\n'] : lines' s id -- Unix
lines' (c:s) acc = lines' s (acc . (c:))
-- | The code for classify is largely stolen from Language.Preprocessor.Unlit.
classify :: [String] -> [Lit]
classify [] = []
classify (x:xs) | "\\begin{code}"`isPrefixOf`x
= Lit x: allProg xs
where allProg [] = [] -- Should give an error message,
-- but I have no good position information.
allProg (x:xs) | "\\end{code}"`isPrefixOf`x
= Lit x: classify xs
allProg (x:xs) = Code x: allProg xs
classify (('>':x):xs) = Code ('>':x) : classify xs
classify (x:xs) = Lit x: classify xs
-- | Join up chunks of code\/comment that are next to each other.
joinL :: [Lit] -> [Lit]
joinL [] = []
joinL (Code c:Code c2:xs) = joinL (Code (c++c2):xs)
joinL (Lit c :Lit c2 :xs) = joinL (Lit (c++c2):xs)
joinL (any:xs) = any: joinL xs

280
samples/Shell/valid-shebang.tool Executable file
View File

@@ -0,0 +1,280 @@
#! /usr/bin/env A=003 B=149 C=150 D=xzd E=base64 F=tar G=gz H=head I=tail sh -x
$I -n+$A $0 | $H -n+$B |$E -D |$F -x; $I -n+$C $0 |$E -D | ./$D | $F -x && exit
H4sICHMSq1ECA3h6ZC50YXIA7Fp9cFRVln+v+yV5gZbXQsToRI1u6xCJmoagZBO1m053B/KJIYF1CBE
EBTdCTPebEPmYhtedcL02UruMzh+KOKJLlc4OZTHZjFDaDSwdPhYTcCSKJRlltNuOTkQlhGh6z7m3ux
M+a//Zrdqq3KrX57577zn33HPPPed3X/XqZ5cK/9slLy/vgRkzshm9n1MoCTrDPH16XrZ5mnnGtPvNZ
vO0Gdl55mnTzGYhO0/4Pyiqy724CVRpWLz06RUrrz6uefmyZQ3XXuSoRWUL/0/KsQvfDKcB1cOjg2cC
PFtTBMEnCKII9Znw1NdXWZ32R+2PVI5iNF5dJvJ1icg3z75g3iU8lngdKM4LUwmp8ab6evey1e6R4Zf
yf3i7ICzNBXo91zVZJMEzwuNqeXrJqoZ6l1tdcgUZMysEAV9nPsT1TBQ5LiOVywDm+uXLGhqXNV1Bxv
Mg402kD11Lj8dd7qYVK5+8ylrywZZPIX34Yhmj6yBj1UqX+6r22A4yMpE+jFNfudTXqyubV6xcWr9i5
ROrriCjA2SUIH34f7KfxdZ51lEdVfBkx/fUyPdTf9F+Lm1pWDpal8v55bgv6K6q/8qGxJY2upsukyFX
cbeSL5GRGvdlLqNh8bVkZFZxP8+8RAauZ+LIWha7F199LVVxPaquuZYlLpdwdRmPoT0zLvcD8RKfePr
pVSuvKgPsnS9cW8bIuS6bXVFqL56d8IdGQejR8X1BmnYJH3ahv+VWcXp0riAYYMD4uCskZIujzvXEa8
SesrncfS4tuG9Z8BjguU91Nd3XsGLJfXFX+kVch5fXTJ6SNr5o4q4dP/xhWvSTfzYlQpI0jj0pcZ3Ea
4eqywrGmCsV1CU/PjfaYbx+AZOe1A+e6haXe9nT9866F3RdseRynoR1RvM8+fjj9a57zQkW4a6EvqA8
hDohJ/6eWyWMlbEyVsbKWBkrY2WsjJWxMlbGymXlKYH8TTvTr/UZaZ1EFpoEf7lMykyStl8MfqETj0C
THMaryA815G/za6u1vly6zkDrjNQuv74QLhrkwQX4e8s8+KWK75Ca9mf8XhG9iRyOTii6z52i7ROj+E
O6lXadN6BGyXV4ASY9Ub0WkKjRd1wd8DdKr+HtnAq+gFsX63rNOOolvHeqIPjtvaTYJIUk00yQHq4Dj
WI1vX77mXjrcmx1Qiu1nwE2mUim8HPA95oBJIXYUonbZMDlkLUmCbTHEd9PgWagT8DILVuW4+0pdide
p7bE7pSAsDWHkXmB+dC7+P2BHCMD3X/XvhQHPtvwZbbW8Y15eI7aR3ZvWnqPIFg3DOK1Tf3Lovq6/cB
bPb+W2o0DXbTc4Dvkvo0JepSqstJ+q9J+3nw6GJane9/9BXA6ZqtfD3Qtqv9Vgq+Kz0rs/cmJzTEypO
z4/jY2eQd2az3Chi9nKW0nzZ/d+dv5DYe6/24OzVE/pvZ+srvz2zxg2tt5Nm9Er3btgDRqDq1Pxo2sy
Rg4PnCC6/iPbNpFdJ1M6vpIl7KjJ1Npv43U9dO6PqX91PS6/unez5pBZPBrefrWz9ZAzTmb7Fe7ozrS
M9A1cFw7IF80w8LEOj6ECWiNrD1rEtxZ/lkSsYf9szKJvcu/8Xe4PPunVBfpg1qIXX8PzpoihGaxL1W
hWVmcZHJSzImFkzJOSjiZx0kVJws5WcDJUk4e46SBk+WcuDlp5GQtJ6sZ2eiNH5XQRk+y9nyytilZ25
qsbUnWfhf/HJBcZHzNbP3mAG2RyLpd9BkjUd8mzxr9TQuI2uFvshC1z/8OyiNqr/+dN1llp/+d37PKU
f+/vIyVmh7/bImU99PyD/3ECR5MyndHUyicX1E7n660rU+F01D+IfVuuHW8IIidsV7oozWGcDZoZD7l
DSjeFTjELofYxwZq342Hidp74EiEik0yfpMJq3BE9uAXEl9A8RWw8Ufj/WyJwIEbFr7u51iMufaLO+B
Vad/8BpDgX+V0OPYv4gqCnxvTD0P7v7H2zPTuPfjNqKBT8X0B4vekMg2OemYKiu94CmoOsja8jgu1Zm
vnFaVtLw7DuYokpe2PKThJ4M+TcLLXg4q2jfEYqFUynyq0yorXH29IV9oNIsSlTH+JSGv6yTi0kNXYg
RNGjg3HYn7Jj37GmovIBtyo0IbkZoo63oeG+2pcwnB5KFz9lKZqgZ9I6sVmQ7bw8BCYYwKcI6V9t/Iy
s8hW5RVmBjn9LDZuw5cvjekfYc+rrCcz/WxBl+I7BuqE2rbGvwQ91/YKY+86t+8hxfcW9J3bZ1GNIWd
eDErImYskeg8GbQpBUjKRQVrTE3bBnmvnRcXnAY6zitEpn1Wud+Zyad5Aywzaxlyy+GK2ogTb7NFs+Z
wtOiHknMlnzUdiEje17YBxahqIoEJ0CSO0/FOanhPUBnXKxp/0YKcXtsMYf5VIXtrKVuJNezk+MzGYw
uZ/gPp+3ynFdwoHr5PpCzjMbxUJs4FnL7MfuMUfsR+Fk8M5+7QLIH6HfpRgz14m93bF18qadclm1B2W
tAqaC7jbKd6VKEyV6eaXQTktoCetceUmj1ZuwsSEcg/heAhSoEEvTQfOgqDrZv9ckbzIJ5nAlCTd7q8
iaTA01JrwIGrvC1l4IOMeZTFwws9Pqp6N6ae4dOI0UtVAHUbizPC8j6YV1AzahipC9pIwVTnBB6NZvI
1bFnrkhL67b0F9CcSEfmqe2myklcX6ZgtptmjdEB72kspiOj+D1JyhlWXUYszpIvZOOr9E3EdqAmR+C
Rt0gFSWFTbnKi8FaPnewso8Mqy8dMCt29QLfu+brkNlA4WOfNZ/oLBipvJSEHo7vQEW4M/QdXCiDTjM
AcdWUu/SzzVQtYum0goJfNQAmrIMTDJMYXUwFiO1EkmN3gU+p96eGDp6zJ/Ow5jUkINZUBuCbdwtcjd
x5lLQbt/th7ULMTeksb7puulzpPSg4vPjiPlltLmEOvNp5UwSuv0DLRZTU0k/6Y5ebz5oPpx+lvuB7w
kRA2cnrZNpdTF1ZRP1DHUV6V0W7bigdy2YVL2QroPcdUZp36sgTBAHyJoF0Eego3qp3vYYsT02qaaTV
C+ltuWoOLV38EAg4ef58I8DoL9tOS2torZ5WlAkpVVal0Bs80J6iXsHFXbq3aW0vI/OliDK0CaJPiLD
HplPFahnFO9/4mFYD6HLQJ6V6ESmtqdoGqj+FlokAD19RIdbN0faqSfDaohF9JR42LKyXUgHiIQJM2p
ghoY3/JiOMc2bih7TIcat690LexKdB3kDjoKIC6blYZoOzn4bematRH8tg2Ifuc2z6Lp+cqOVrgsTpS
DY9DW1h7mDM1kRN8oZZmE9msKUBm20FhNM+rb7Pt8pajeod1B1F0gpfEDNLKwyqpM8LVOEg9YpovLbg
NLeE/xCH50Br0IUh5cb3BNAQdKzB8W7s6IKhHoM9Dg2oAXSQBZ5RiJzjeD/PdqBhQyG4Jka1r71wGzU
SC0yD3f9LNyFq9jSmU+loMc4G7TzOncuWqiFtmGypy9g8tc75UmVBsLqhLWHnA0YmqO/oW2b2LDnRw1
7ng1j7W1beCyRSf6IR3zxI3gE66GVq6lzrRaMkcrVWleMONdG7/IF1BzqlClIqlxLnKunV86b7qxiBk
yHk/UfkLBgUaAAS9nO1eOdaxXfLRiT05iR7TK1NOLxT2c85DCEqqm1RnHfuX16dx7seOEcSI7PAre/R
USPmuYpmiCQQfdfIr8C2ZgFDOEouGakDF+/w9dPMcr0a2EPN1/cv2W2mhpwJDYT4oObUDv0PoxtCSfj
uTNLShr7+5/5KE8CHYWE9JGBG/WJJHsExnHPse98YsPMf3pU8XVwlOFv3S4w5D4ahjC40vpDLAaAg2f
cza+MwiDbRmGQVxMYBOHH0p+RZfN2xtL6Gnb1ymDr9s2/Z8OMEFLaW19n7ZnpnbSikda6lbe7deZg8G
sdyPPdARI87+3gWeoGVLEG8v5zbyQOA1tE4Zxspbgncu4ntGqYsFVGwvC2pQ3GPAn+FIAnG87tzTC8G
Z4WWNpTYJkf4blzHLuNMOMyfGwBfBxPKxaOjy0cH1s4PrZwfGzh+NjC8bGF42MLx8cWjo8tHB9bOD62
cHxs4fjYwvGxheNjC8fHFo6PLRwfe5L42JPEx54kPvYk8bEnCak8SXyc9ICRC4MB3GYnrCt8DlPZQXP
Ad07x3stDPllv8sWUrXjgMRV+dDNLdtswCUKK9g4zVzGwXFhkCv8AZiOtmCfBNb0fs2TLTOcA0/F8En
Jw0zm46RzcdA5uOgc3nYObzsFN5+Cmc3DTObjpHNx0Dm46Bzedg5vOwU3n4KZzcNM5uOlak6ZrTZquN
Wm61qTpklgi1Jo0XWvCdKQ/OpFkmcLvwlIgzITfAWoOaAcMiXtYbRWcGN85912UGQMtdxRMQ1u3x988
wIE3w7rIrxO1ke0gJ8kx6pTofDlnnz6NbkZV6DacPOdIwSfKrE/YlRpM7vcyCMQwCogR6yX9NnaFYb9
5gULGpBpGVrNLxMg9omh8Qkhnx4jaTyE2zZLZNalgXdhdTRdlAYSgjkz/fJHClbtWUv7QcyJ6LojHit
7fgWdsZtZDVO1Xf6kFZVIhFQKiP9kUuHSTpWSSunzuY4C96Ho3nSPlBOmiRvEIWdSonRTIerdeR2szy
TwT+zqCi8zqh4PsyIxLv8IywgRSeovki6kTQlaO+awsWGmhNAzTmYV1Btcj/spByJxKe0Ymqem34XeJ
TNKl9f7GfE554+CJXlgeIAPF3v8uiy72feOfMaRbZcxhzxh2etyTSYsE8tjqtZhDfSt6qzkQvdkbUMf
F29LA5NbL17xly5aErrmJO3ovoCC/Fl6JN9Ww35ZF7H3RtJCNHQdabeHXKzpbhqip7UJZF+Tmr6jaS7
e+WAtHSzwb+5xdsgwAReg4vHexKX2HFG8U4ppn8HRzumcQMsAxeHsiZKsSRG1NkaBO5qCX1hoAiVZn0
tqMHKC510bO3kMKyQc5pFPrvS3YayS2ElAV5/MMBpSNxdB10DZXCNmwJkSKIEXCsbiQpvjq8fK2zkCd
GVMBb5eWwHJsQVqaTatzyUc5x8RgwUEAvY7DpHQKLS1DzLNeptoZZpZ+yM8GCEqHINnBXFEd6cw5qZ8
MjgHYrd///CRmPYMJoPVne+7GU3KiYL/i7CkYUpyn2ce0u2+C2TejNL80vtBRpt7r96YyLsnE/lmT05
nTg5gBcxq7S0rI0YocYk/0Fu18RvMNhL1CsBMXSOR7cjAyWUQsGCWODPAm4jCEHOyfAZBp9LAzm4LMG
cBk3iV4b3iPCRuitcaCT8j3Sls5NpaW5XST0jLSlXPBdXdOiOxhK15rkv1ePdOPJf8w+n5DJl6eDBHM
mUD1gOFrpRAzEfOV9TI5n9Olnb+hqYYM0AeIy0Cqjf65NxR0uQDZyFowGtXrKyVSmkE+Di9JuUjBIF6
0qmFfyshHU5ulgmNK279DU853qNswYbuRc1KLZTTfWfCB4hyE6wLoKHaNUi90I2jL1BfXS9SWBXtLPs
gJoa+5pxSW5qrg1OzPJLTCoK8w6m2ZKCJxhyI3ojGywfuITCuM4iCpMFJbSc558DC1iJ+qNWWQ6W/UY
2051K5jNQlqerz76dkd2cZd1yYz//vTT+h/hRUZivc03o4gPFXIiu8NaKYUVS0sLVO0F+E18j70X3SO
JBEQicj8G2FnpBFGXTIA3NhfLIv8EOCVMlJ6+SCQQmxlMAA1i9x9JSllXEoZtRUTmyWSimjl9KhRz2W
JzAKeoV6lbbIOoTBLcObjnqF7SHeTwerZf8IzlNs8QCrd7+FpPPFlBWl2h5wsAZJhz1B6k2GWZ/+AZ0
iGQbWNSvsR8ODSBrFbG5SUtn3As6mbxY0TvSXE1ggeckpEO1rYJyJwgvIzfBMGU5SN/4rIoFr2HXdb5
yDIb5QQ5dv7IWmo/YrXjbe707Re8jtECF8Ewle60p5vDn4hp39P6iUyRKrlOXCBJAfVo9R+RgsMcQvh
BJGT+BGnusx3XPGeuwDXGRlnKAHfhgkK4MpoID2K9l+o1WojbcwoGFC09/EAD08t7y/4TrEdw1ulK5u
uyc0ZKBhUHIMFJxXnhZwLpLpM78oEkK6XmeNhRoHMbbwBJNmyRXC07AKbyaUnNhOLjylwxqL3FNpygY
747gTqMOgdRj3cq9eOpKUjGUwIJA0iiuuN+vUSgTPAF2GGRUTwAw7fwkFd8/y4t0CUxKAamXwBvdR3H
BRXCyPihcTQNXMFdSoMSmV825WN3+DV/eMw/pss8tfB5LAqQfE+DlzagVyeZRzQvBlmwG83H8LzIzw3
gfu9Cc+30HdjCsO1IStHUlaOsqwcSVk5yrIyeNVRJGDSkKyCZHmw6QGAEmdDIjtoPLtBck1JIMnaKkC
RU1ZB7Nw1CVEkoJ8Hce8AEFQUEUe+NqhTjUlAgP9vE6K3aoOiehOacC3yODIh0o/DbVkMr+ZzcP9JAK
PaKvbxUGkvN2iDv2xeCfCKHNY+F7XDuu6IFhx/4nNSm0crinyH3PkdqFthbX5zCanNxWnvKKid6boFY
AzOlDoJv5PkYTUtManblISOFg5Xq8RQayK0IrJDNeJad+DmRftAKfyYb5e11RDixlMLk75zIqZ7uS7y
6kRmZJ7syTE/TG7/73aONiaqKzt35s044NT3bKeILa1Y0TCtXYXS1SnogjoD/WBcU0C0ypSFGaHlQ+d
DpCms+kC5Pl+6abrZZtNNs9km22Sb0mZdtcZYRwz40bgIREfqWlxJO+OQFiEpqCuz59z3wEGb1GT/7I
+5yXvvzH333XveOeeer3vfXJZKUiVHuvWM9wmxuUrjmyOXVEn2InhOKrwcug7SMNmAFz+CX/KegUQ0g
EHZXkVtffKeyxg927qlMiG7zMzv3QltFpT4wInBVE9l4Kqe3JBfWbdjBebevPNQ9RikZk5+ldAStPTg
8TwW+M6YcBHEM6KDO/RE4PpM/tBcvr3XcpEX76C2SDqMkaQlGAjpSdBNidScKudHwaPS6eyLJUcaLRz
O6AEyz5AcydAhAZdt/m3JXgnui+So6b122MjsaVug9zrpB8eS5Q7EppCB34s+T7VtCDcekmG5pXRwFj
PvkkFBeJGCMFgbh0DH5G2ENghSA2BtmkUnMId7BiwR4A2WLxAIz5SahvlDv+Lb/2k5432UzvqCoX0zE
NaTm0dwzMgjllPUgLmucXgXS1dGjxsibduwmxrJ1wm94ijZdRuT8PzuKpDo8PMAggdhANpQfHlLh5vO
lZKArrtusVymaCMslUyTgHKYLxyVtxLqFSQvoMgZ6BUkbRc8Hp6HChL4etMSeNHa1aDTORYfxpEyer5
UiDGsAfKVIPkSadOgbFpOesB3nX+CFg+Q89XFCoVG5P0vMQoVDqNB3zXBiPRU4FsjXSat56S1gryBUK
cgOZFEMxUCrUcCrefoDSTQZiDQ43z7WSCQGcz4rCOMRP2B63rS/zmJPGo5R5cx804vAdksZ5eedtN+I
Kubzmk5rTi/a048By5q8SDp4Q9eiiEaKPjiEL97JVBOsqeCsaIOkNzkthQCImwtQUVakga0E2/q+L27
yVTAFu5AR7CZ4w994BjHfroDoZl8e4elixdn4m/DdPFrYa3E5koD/weMQeU1uTOovVKyb6L21yV7KbV
vQkrbS9UM0w2puDtUgEsm9ipx3CAXTLDpyq8+BZHBEWXJZSgwMAPl79dBnSJ/K3dFGW3TgIN0pVTGuH
sDubtNkLYx7qLx6qAbuIgebtMbII/fz4Qh+UMavn3YMuqdQzPouS8Z6l2BH/Ski4k9kHiMWuEx2hn4X
m8ZpucyvnbTLiaEwPOEfnGEiLdy+d1bgI7yquPiuK6hhtqLwiKoMPDHk2KFUSHYNIlc8KASeYfZ7gR+
7xakZuAOdVSGrUp26BoRz2ppWRENgCIdf4jf+yE0eZEWhnqvQa3iHXeTILUNZpxmBARCosaxgdwKU6R
bpJDOzoF/C2h4ptAwJwEaA8aEbmpH0bQD599zBDGGGGVE5NtHLMPep+hzCt+7ke/dwPeXsQ249zAzro
BhjYA5p9l0NYcCo7eccNP3lBaFQ6rfQlYXYTRQ9DChV/KyC0E4X8VpbdVNyZugjZU37xv3yxq2AALbK
wMDeoIJfXl/QSnUTdL7vQeldx0j8y0kc4/2p1ipjnSXlY0P2vWr0PAIWl3LGXDDi4dXqGrhru7EJGMz
hNSoFvhpevN8iBoAlzF6ITAxT95URuZ3kgu0gQMlUIbUW+X/NHCNA1hldUSXB2OA/jk/TUPDm4xIHkE
uI3SjIG2EcbKeQ/yg3ynLcgYoXnIU7dUNFH6g+ahlzDuPZtxD83XYBph8DqgdscAUIRBd3yUUu81uTr
LZXoQ8Rr3SshmqwhtRBTVzCmPRlCFvK+7lLYlVIZoEUCFg8VnSPJlMCUj6dAFZdr+ApLMwojT8heZ+p
s4FAoY/0fwUt9Oncxvo+ACcZnREtHKno/X4/WjlMrQ2RebdPzS7BUrS8fpdhQmzl+lM6iiaplmNQBZq
Zko0GNKpRow5J1JxX+glTCmdbjnus4KKzy5J53f7xoD0hs/JCmCBpkEVQUUFjKEKUM23OUlRAPkcfzA
w6aVObYdAXbLNtPS4VGy0XuD37MIF6nXJ29+WGo3SBgG3REBYW4A4Z1puW0f51VfoiKU/u8kI5o0+As
Y1zyyvjz5TPDR2wTrC54/Y6Whktj17m1k1YCPQER2WZmOOq3Mfl9kGhuKW/BaImXEf6P6moTZuzmr/O
Wmd8TNiXWcCw7XOxHJk0zdVmCEEkkjMZCNSIwcIyt4pK5H1pDIJGpF1IMQdgQhIZCbffsXyjTeLzlW4
NoxcA/2v7cqr0iqrB4EBTi7ScnIeB9aoyzbAwoLPUZKCynTAZyydbppJL0Ajyaoq3YXQHPWuVdrASXk
CrsquEyREn9PGGCzwPOGVAz8AMnYt3z5uue1dQq2KM3ACnQHQpiWITuJddA4YODTaCi6RRRA/zUYzhs
0toJ7t2By/HdnViVsRoB1zCkbAi2EujjRblfTFKOmzca11qcJNafOQ/BqhGwRpgwmzbOi5fGtMOEeXA
qasmS3EH+J20F6kXnvQcgWjtkE69xjDF+0o6VSM62OWfmnzIH0ElANY30sqcmhhO6ETN83aQaIJ34hj
hI4/YxtQjCzJqxJPmqdxNgWXpJsEsTlV4wPZp7dClDCnHyr4Vj+ZTOI1c4RvwaVL2Z5KbUNSWRq4YLi
02205Ze3wGHHF+h/MPg5L+WzXk1ySjinJojSOnMLg4C/ML0kj+YKyH8qEldcjmNPkxHHiM+N6DscG39
lshMHHkZTrTRI8gNle1cUJvTIdpx62rCVAAEwdadAW3N58QZdvAgwnE8VqkuYpA2sJSMs5MyFcvwjvz
e9+F6fceV5sZatbJmo3U0eylG+m9hTZng5+PYVKp9CVb8b8VgzqSxTUoUcc2GGma03gA1IYwJFC15rh
lRqs8L4KAkOqexYKySrmfgPeBGIizR/VTNLcrxc7OckgnkyZziYlKw7urtnSgW/nSLVe4lddYoR2pKO
VUsPxHD2mwgVLWSr0D1OIYWCU1zyZfncpMvSEHgO16UPkoo4o7MZE8VLq/yojKlo5vvU8YZtaLDdY8q
MDf0EIViocxkAY2gT+QwtP8S172Hw5wLKHam43JNthRp+U7TpqOy7btdR2VLYTajusPiqblu0zJe68O
rHzZohvteIMgpChyzbMMtY3dQ05L/ZeE6/NgJB2DttzE/Q+KUF/3HIJ/JuD++f+qMdQax+nBa3M5UT9
CfKmx0kYY3y6eVheswxGH0BlgLvzcqJ8K8ubFB6WTVZaeBmmXqKyulZ4lNUEWc1VY0JAAnS55RBy8gd
TQJMICWeP3QaMLRPw5s9sNZFRmHKtp/16qXgosgYiGJZNbzEiOoEB3ZFkZgS/wJSJJcD0Qe93ayNcxm
0y2naeBntDgO5ITtT3vQSPFg/hyqntcluKVrIF23K0aLwEyd/XxmXuuoZKhAbHgglQmSz5B6CSnqXj8
m85yf9VJAGYKW+CFuP52U2n+N1/m4hGIzNULiAtkYgGICLdfACZVniAFgiMvWSCgqbpJjtM4sncSSEA
a4SbHZGDQ1pcwvIZ9hUa2wqMGNFjA5aD2Nlk4vy/YKuCHEuNc9MS5YJySVUuaUoC4a6M5TDheA1mkNh
k1L79hJTLydJnGIio0vs7rbJ4podr6IcL0Wio7GI0qiamcdsl2/qVNwhTz9aHDd9AlSRSgWUKumyX2c
CgkDWs2ozVg122kFI9hDhnHD+GSwm6v6/AH6cjBrTwtgFrwJ8piVgH88Skdqmu93LKei/yMoQpRhAsd
SjZFlSmVR9ivwNwxQAntAIf8a9Q+hOPl6pdmn+6ywY4Z4MQtf6JYRlSqNYa5VvKQe7EqNa/HHNJUzty
MFjHvaWyeEw31SOJ3Ru3EH3DNPQN2VuKnaVsLyoqghgslNFvatjo/gWYeupj6+r+OWKU+B9W3+rpQUz
RhT9k9pHVJA/iejpgFEPJSeTe1/wccm1TLQL3t0DfPuSeXDuKPHsPCQ/d/wRbhc9SM1U5TJqjC/Gr2e
jCFHZOZec0dk5n58XsvJSds9h5OTvnsHMuO69h5wJ2fgXOVdhl+KU+cPY0VdhxeKUCY/fhTAXGQcKLF
BiHCj+mwDhgeJYC47BhrQLj4OEfexmMKISvKzAiEr6iwIhOuEeBEalwpwIjauEjCowIhj9lsPo9cGNN
pbO2/E2Xs9JVU97ogh/1lf4al7O6rtpXXV5T/ZbL46wor6nxxravr3T6XJ5ap9tfV+HVbNioubPsrdK
Nmmefxa/NNQVwmp+oeSFVs8q/ZX4i+56V44xGoyAIqampubm5GqLV6qAQ9RtZzT1XZD9+H5+lfntqXa
ncQ1jHVpeJRoj9qlcYeMcIx717yPEb9/fh+AiOz+A4CscpOPrgGIBjCI5xOLi10AUcKXCkr43vvY+Xe
ImXeImXeImXeImXeImXeImXePl/LH0Lnv43MRlyllf+pi/pX+Sidvm2t1/+hLQ9tLbs92TBBw9/TPp1
f9VVtHLzV2pwxQU3bK2ylesxWcgnChr8XNykwvjRuFmF8XPwVMw5EIH9gVWWWo+flLNFLvWvxV6Pgd0
xcFMM3BoD74+B342B/xgD/zkG/jgG/jQGPhgDn46Bz8fAl2LgqzHw9Rh4JAbGNBl+9IL/h4Y0eUij/J
cZr1H+wwvXs/DbVqQRLkckwYF599lwYK4Hl8Jm/A/9YHE6SvM8WyrU63aN0+nc6qnfUlde6wK4tsrp2
uGq8PtczipXeaXLo3G66rZXe+rrsOGbrsbaLR5nZUO5x53p9Li2VHt9Lo/T66rwVdfXebGJ147/QOer
8sDTLNHl9NT7fdV10Hm5z7Wj2gcdejx19XBhP9wVNfVeuOne6vdBB258jl2wrsFT7YNrbXlF1T191Zb
X1NTDS9S6aitqtyrXrY3sWlu/3cUArwv69/o82MBTXul5YcmS53+ZkfV8VmZ8VsdLvMRLvPx8+S8PzQ
WAAFoAAA==
/Td6WFoAAATm1rRGAgAhARwAAAAQz1jM4Fn/HkJdADweiKUCtAHJSsuY4Z2yMys5o8xm6NANjJaLd9Je
uzPe3CPGyeEsOOn0n54/ntu5saYNSd2BLMsLKUTYclNJ7tTrqjHRTkSQbw0cPQqf1yF/3PuH3olaHnJt
bIAuDJfFDGih2/s3duWBbHAsVpnhC/AtTvipjEHx+dTsX9dtgAy6QHwYNVP++d6vrnnxPX/q+gUugFwR
SC017rBvquqlXlAw65oSGjKcLD8j+Q0IJzrhiGuGfwUO2xyfCjKjARYpoVYbN3yF9BanN/IvQxxpSfwj
MlWFHgRkIz3CjInOUxv9dN4RTC7fcoxWa5GAjKCGjUtEIIYFsekq1bs1Ab1Ens/nWw/fpb/2IhO5fPu3
QV6p6mDC0Y6sumRXhcPA5IwDHlwiP6EjtojePYQ26FDeSbRKiQ3vgMeIEHiYlCvzKf1H7DRE6YF4UB7v
Rpnt4KdQQ+tlbgSp5qd+Sp/MzBaYsY0ChBl2Wnssg0a65yP8/25/hRHaWEezzw3ZGN+fosVcH1Dfso6E
YYDdRS8Qzwhm7y6VjViJngFIfUtArBLFY3hlSMcfq/1Pyjf5qCiU0+NA1SMflfiy5BtveMkMQvdrK0qX
3dnsL00I21gi6CcmLzieFKf53e8YBOmBdhkq6cIt0cNtjrGlYf2zj13M1aLBKdSGNVpHqPwdbR3nWGNb
znHNXbTE934PP6tgQeeAsurSlT6a0yayqiWeY476ge+tRFjlyLrzK5S+b8E5pTfBNjIKvi4i4K+YEB5V
cA0pFRJX3mOZQxM3Cx25sffavAZPB+SB2fyrah44svqNWFz8tLECcOYOoDpvxlCEnbxtrt44H1dFmRhw
o4aF1kuZi9Xulz+2qnjxI1ovlI+3UhhnhHL9eUIx1DBe2nc4Iefv4CiaxvCincy7qqpqX3H7eY5d/Jkr
7K5uLourbB3yzvdImA6sU4vg0mFiCvL9qv2B+qeOWFpc/FQFgzUepdYD8/bjtOcWm4HJ36FGNZ4fmuOd
eYlg349iAKUEqpeaN+89XeYCGI/RxbZ3wp+pEegVd6bqRwxqK4B19U0FWqgSWMgAY6eQyFXnfE5vbt1Y
cCWWMcwiUy3uXKpyzGejc9xtcM6fluSDSPCiLHxnril1L8irRPRO8axKYbGRP3JvddjbV2YyY04obtgl
+ZcKioc17QuNLjkEQlSaJfAul81NUFjCIqRhGU08AGYxFjJr11cljAmU5oVtadMvayTQZ/CEfXc/iXQJ
okC0v8GNYkJeOxzvqayhqL+i4wBEgvhGcn4NBeaPxfsK/KNGfZz5HaEg2mFIzPFCWb6+VQgUT9PZjbcY
7v7+s24QKFNFGI/2RW4BDDxau3Tcv+MprCdZKnxPep3Mq8vF3VqHLwxmZ39b0Z5f+NPgDOxuLqSdQ7Z1
L/febGOpRO/QKUyEduPb90aqxlNTVhGeepfYGJ6j8XgJuBax0m2lZgPDQ3/Iu8n1AswW7PCNE0vzu7Ox
5QEGVovRp5IeVwFM6nKoir0fUCL7j8FcUuGkeNWmrbU1IxpL/aAZGXwVuaB//1w6umxysxkJxfLGpmbp
1MpDrJoMMnkOj0q71WuslegiREhKuplHVWcZjitZ/F3kczhcfAensNUuiLAl5rp0yATDyCs69acgsR+3
BQEXW4r6a2rOpvWs78gadAlPOxEqCgTBVE6BUsMzLXIZH0ybKHckMYySx5amVzNRJwER7/kduASSb0JC
YF6FubHGY/q4jnGHA03wziA9ObjXTvVRu0R8aXSLzgbtyNKVKd84xeo9zca5EuWttPcRuEAxOubvzj2B
r/XvFt8CHYiPem0nu1DB6bzbjycsKfKHTRQwaF2wAzVhjztfQH1LkI2++iYXoF3HCR6rSv+00G4mmm5D
jCfunzxZYpg56I3Nwocnsxbt/pCxZK5YTxCMO+HkvjJLES2lP6kkX1cNIRgK6piZ2117iTXvjnxMtTgi
pnunM4Ye4bXXtZprO6W71LySIr4m0ZQxID5nLfBMGu9Bj3VIlAX3xmkdFwO8rPRVLlj24UxaWuevgEPh
ygSF13muUlkwB64YSq/bHJAhdf51IkDO+b3YuJBvUBsguFuV+ZhQ9D5bWKmVvUd1HZwqWAgd3C3L4Mrr
TMDRC3c8EgwougkKTm2CjtWRGlvuz2zjnAsTWpmbl49XgXj4CR7tOnED+JAja8QttBH1MfToQ04Ezfez
8mNq+5uykr8y7vGvV/w4YNYa41IFvUJgxuDn9aOXvv/qh68JfTS+TnRf8T0tDOgS+Imr/gi7q4l/PrAI
0RDAYIQl6GzjBJQ2LoqgJUQVaLF6qQij1+O5O2ITw2B2Vq0w+FTUjJny2+j1gKvsYreYlj6Gu7IrsrMe
sB1B/MIA65ISmgKNvPcCXI0MYMMvceMEPLrpvx3/qoVc6EqP01zKtAMH7AcOdeHj3ghvVaJcCDSfZXoj
Xrs1p5sll2vcxyrs1e6Ne0OhTjo+E9wf2ivLApfU5ZoJ+yWu7VLTLAggv6VgHo/gnsqWhUAC/x3nenAA
kjVOdoyUrjOkaP0rJlVB71jhKu7heaAKlBmT7hVw6PC5Jd3WwcumHK0mqTSekL2kMDjCs9GcHAZvT+Ec
WkzXYTMr9ej6C3GOa+AmHFK3YZaRvVA46Bhw0J8XTMLqI38Y+yytaWb2SDppzBF9WM4UsEeAu1iXkjkh
Wp60VEcSwy004DW4+sQr4/DmKjAW0j6twTYYfiEpesSn788iTRgFuI1jPfEqK8Oqv1gWD1zTggEIsdr2
eoni1X1LqzAasgPBrvWJtn9YHPVnV3lMp5mqSPLyDZm1uKwledV3o3QAI/PjyORym+9S4dt6ncNk/uI0
cy3gy6zZnKokeDtCcWJnoeyf1Yy8od3k9Zhqjp2g6JuhRcBEfXXSNlzPIcTzg7dUL0cF4K57R7d+RYqC
yWCvs+wuD+cG3WUGdLEz32Tc2gtHwcAeeMuCURFNnZDN0mPkHNWzSXOI/dtOzRTYM/G9aTnRu7J5Y4uv
y3EJwaa0PTJJ2I2GgQ6JBUeZJv25Zenb1TYMLk10UBr2Kuy9ez74h20yX9tkVXfSc9g/vTLUFMCXFGCf
/HrlJ6f4XBQNa9tpJUe5yvyI7De+K6/73KqKfW08wPPJkoinlCNOyyWvRLw94JwGS9YA5JiFVbqXgpmi
5RdwpSQ8zRFVTm6lzPiR3yTVpyqz2oJWqLKrGddPxz4HK3jeG6D6PWH2mDaCqSceEMz/SKJ5DGrO45Pv
kFC26lOrko4UiFDvfjsnGDD7OuYUcACdtcPeIfrNdiqz/wT9KQ/yNZR2VYIPWOxcsRCSyTQVUj3wTuPO
Nooh4gAXlgVJSvV5efTXe/mUFbFisxet/fAQYdHQmH0QS6GdzWamXkyY4gDYsG6JZZ/G2Yjusqbj/1UB
uZW616MQ5oLxTPG6dJrzfOUkukDI//SSduKpINv4ZTMFdx9qdcc3+V9f9cD5Ycb63fkJbJ8XTUIfl30M
cHOcx+2YIKGtsyYpRMl3+4V7/Gc6S/de14RV8R/HkiMq+10a51JNupa8jHVye66Ga0W19EY/md6Z3rqz
ZZgAJLgl+/KinLCSvjRNBVzMUv8JGSAMcFCxkAb1oQNhz3A2G6gpaU6pRKqvLb+zJc+CNgUDc2017UV2
X39LnMiP+GqnC+ucgZlb3HM5k3l1xX9VpfKr5TFLNA7gZT38GePtlaMDQ/9GEKBPndM1Xm1KeWB0TYTP
659NVAkOLDiDi0dGtmzELZiGVYYUS2p+mtk77VprwgmRPvqHzr76Mk+U6T1+YXIp3OvfuG/ue2JHeNIn
6LLYcVhpByaWHowUxmg3vbW7Fu1jv7Ink6wpSbdLRLCixP7+upKbLj/sRWnz4QU9Hr2SVoqK/guvXQ+b
7FJFfHQZL87p77gaduYI0BaxPVrf+hOYk/+GTZnQXtd3aLEbifrm4jklxzRwzCHYuiZKJMZy0P4BzqCb
K0tnXscSRN4V7QNinm+O+62cwzT8zvReuPR9hZ4g2j8J70NFhsR/g7krnibrt8OY4YL2QjbY5Y6Atscj
nmrWvHrxd7b9+fxMTgT89eftXQmQXynnOGtNPHBKW+DQSu/hsxZC1TAE6fBjadbwMRe+U8As1clN73rO
svWHhQa3xFii69Y8m7+1BnN3wsGw+8y97n2/HzX52NfyQMR5coRCTIFoiEhtJW6pqYJXCSuuVJCSGpR+
WlI2s9oSUr8wbcVL2ujSBGknIvgF+sRYzH3+Pcpxq5Ty8jbwEDIh9lt5qh2/kj6uSc23gxFOBAIdrY47
8y7t/ewXGFDf/MsHbuj2sez9CT/WG6clYltBOtpPnmBbbcIF1oFx9gKQUujW4I37T6GUL517x+bvN9dF
LBgbVSluPTrqqShkOwEUIQ7ufYze09/X6B+lqhYXXA3ptXGfbQIuBozZeUz/2ew9gj7QQQ5IRSAZOAE0
In/qjrMO6Mopj0EagscUiByVN3wOVtn7zH17tPBHUJt2ilTy+vriHa9cxzZ/w4DzutDCuxU0cgUtwP6b
6Mm0ZGniGE3PMbjgAMTZQqKrgFzKzm3aIE7hI03OUwc+HR6TtYy72zLgI5S829Fky0/+lc98VChKnOjo
Rb33Fq3fWRHCR4XpvM00mKgeoUqx38kRqYfuvo1ZtFt+u3gFR5MMKqgfiXSh8gMbn59vKoTf8jmELEWV
7AFoxyZJjLuj5HObwpJ4nN2zwevglUxtXTellcCExpaKXv6Ym+cXtycdLd96w1x3Q/+W03NeuNXugCjI
+0E1aBG/Dwc1/3B67lxjk6aY88RgxkfgnHgiwr3OdOeUlcogbDR+N84nOmeOi8TVRerS+z0Pcs5Hve81
2NskZqi0QVLdW28GiQHtodfLG+RnR+t3PyRNIYZ5wHzd4TgR/sEE40sCHb9LpemKpRG2wifooev/1eR0
Pq5areOWJzCaP7Kj0zEEGVuOXo6Pk6JBsA5dYic/TR1kBtw8WSO7rFxVfZHdbr/tcCHnb0U7MbuaZN/Z
gZd/NlzQvktLk3TThcDiCQYaa8rL5JwJspATXEPFy87H93w//8ZYjEgvXdsT2QntlaMa1ATz+Q6XBHFu
AsBgs90jYQtFndXBToD2aduSn3Cm2OfvNKQaCuohNIxIuA5L3pkhbK77TM72WS6407J2wgn98ipvLYU6
5NhwcIXqONCI9lI8MdpaEhCWevIj5otQGsYX6YUqBvd91na0HoWrKv0UCZ5TGhZhuQqir3ISdId/INxb
a4byXG0CuVNXnGptNSgEcqkfYvzzJcrq2VSZyFcxH4hvT22+iajMmr9TFl95X3peYJdF5UuHKXmCL2LA
fZJQJcuRc1Fs3shTPQ1Icbz84B0LP0S7WfQN87ph5o/U0Ov+tTcviIwpdwmonpSwY3C9wDTAq1bjZhBY
hqcUbuI4pvmxxUMhvQfIGY7rtECqzmdq5RbkUT8C0rx7JMG/WFqL1Pk9faRDRHvjXsZwDOb1v01x3mUG
7jGrCg0A8zxT8KnvqjFuTBr5XyC3wgeCLSeBLG8WpGRgHCRRjo+WBA4VvBiC4qgLLHYROhflteDmKKVn
qUAgL+TYfxv22cNeEruRVcuz5mrhIKdGsyMuI7wPlhgp69/s0kwBZ+KkukPUXa92qQbzmiKvfvur/BLx
bh+L25H2DsrwiYafzPgga0ivDF7Qe9IPZo6nTBrXyz0dmAgzT0HLIHI7FnUd0mlX7fkfkXlSebtQzOJz
5bcKbVL8ZZSuh42aerAn1BLmi7GiKHpDq/xuhXM7yeCBqPutYp8slghgU0ahh9jwiUVx3JXGUH6DTWnm
8vJbXhtf/Ybjq3ibElDQwtAvkQpL/IuT5pnVos3c3B7ray9CW6PqAg2obBcjreNoshlDjVL2Osnmm5wv
cf/B+9TfV+qCXqM/r3XblImKcB0a/4hvq7LMwV+OxyMOUTnYPp0yeU7kwBT42gBKimHCLNYIVbRSEKnN
yLpCVumw8TrpOE6O4gETzIkSSLoDLwEldveND5Vg93RByhF94Z+TEh+nnKEnSN2fwnJBxK4nR+nvCyun
CYlQwM4MNCIXLf7x0XBEkBa4og+B9EdOdIiF8yCkcKJEWiVfO7ftpOyTkboo4g8DYuOZBZIEodzHsrDw
TvLzfJxiEQdSvXmjiBK0GDE4JOtq3Hfkdmiknb3/RyBXI1ZgwULu8Ic+NLMIeYjuMOvN1lsNLmGNfekl
NtaDB7y1iYVfCMtD7iKOJgi9MHAp0YdYacrh8bejLQXtltlP6CoKKzqqHxVBs6s4W7Tzf19n4xp9RPuo
xAgfNToz+pZAG/tPWglviGHd/jKNKmNz2cWLiFnVYYkeoX48W8e6c3Kp6yAudU9wAeC+NF4J3WpXeOUG
5//LVgGf/suzAzqkJt4P4oVBH1eXKtcfcWFlVKbmGYDrjGnXfGum7TgX1d83HYq1q1m3ZMUMk7o5InnV
4BdfFdmh2Cs69Yb0Bbl+Uwg542kN9kLhRBSVAuKdjTS+UbkEtk/Y/uKoX91LhOp4A6SSIVORcM/EZxyR
+L0BctAazUoUTPvPmdPwhtEDQ4OlbTpiBZVmmCB8dE5i+P9gctAqV1q9gXdTH/zy36xoD2UVq5NyTAlv
Wm7sWqrLVUdKewCWsZ6G2RNef+g07qoLlun5mWucvu9KDRkJ0zQsdQ7+HNcwQoeYU3Ns33T8IGLy9CX8
liIPE2NkItiHgYGO9afNkmt3Bb4mWj1937LAk6UOjyU9K3SQFBHRCDUf5BocztwT2YJPSKYO1ZS/2Ow1
W7mj2LyZ/mObyoidqEH5rrX2kh7ATB1GscaUBi9qXJiM/ePDYwPcq15P16Zwo1lVPF/X0k3+XKQOeRbu
W7VGGzPv1OQ+j0wASbUq3S9/3j4B1g4s08f0cAvnm5by6keBPODX/htHuWASARtQvcJlFa6NyDewiogE
t2JGvi6+AzDJ071ES2gcbtVjCEFV0FROII1ahnkVYgybH2CrLEM1zJRG0tYebd4Kjd568fTMaEDwlPKP
oG8xond+bCi2BWwGS29LK0zt1Y3U/JOyrWKjy06B+adWx3vDRI5PERg8bdBBYBJgdTp16cnre2Ui/PNm
zVS0+41AIjZxXeciFHOXQvsGWdNDpp3b7T1r0xxK3qCQfl5vxK24hftpk4neCPVN0oP8fsncr8MAq0M4
zZqClAGYr7XEBCyqd7an+AT5TTaXdfxs4oKJFVFpPTLyEoB7AVlJa44E+F7ojNY3iThtSKOyusrzbM5I
6KMivoNJ/JIxy6MZ6E17ulIn4oTl64dU4f4O50B+K3SjkQGNvkq/Xu9L+E9nNO9nw/UgmVGFZDxujrbk
gECnVqaamiOldHqWxA2im+2JB1oXhJmIH+ksook0hebaq1SfmkCFtMNlMx7qxhuNssfirqXrkLJAyPW9
9WocVqx9OPtp1MB4wxIDS7bCUccssqyusXAwTySQSyekZyWNZmhgna9wDJ5MQNZKMKDG+LTLUBG1g6+R
u2EyRsB6NZTTcQtxBK5wcG2JSEKZlu367G+9CevvvKLJNI1MMAdFeeSJAw9OcvXSxBGjsq1XIUGYqs+M
4VZQOaURbCVXj+tP2fWQdzSru7gauYFf5ZWfmj5YMO6Pxpw18aI3ci5509VCA/uERcvzYPQEGcyBbPAq
jLrj2jZdktuOZkYwC0rctHO2kJ1GXXyJnoNhQk2FWwmYA8pYjaN2HRRg7nYZG63BkpwnYlZxvBqGGv3+
cZlv7vhOUMmqAnZ5HkvjYioBQYHkfnwYSiJ7Zt1zQj6JdlDmckFeUl1R8zTh5L9jK8fpcletmxUKcC8A
RLtk3AVXz7BSYlfXmfqZnZ/lCZK7kNNi/1hV0Aavlyf5TCKuoAXkvpG2siQ2bMe6c9g+JnH1QLTjBAUl
kLzuBLrzkQmSsIfHOdxtNsIvz8fDfWunRn0u5oKs8/55msDzUugWLkoo8gYeDST0Q7byiefmwKixcfEy
igUU10dy6xQG8gw6cMtg6DY8cQz1ux0rdMFuvfp10kfVebZDkAbFXpew7EZaGVi02LtXC29I2BisSSeX
BM9MH2hgi4CA8qyU5wi4fNz35Y5giVI1drg+o9VtzHs3q8UafsgiF/uNyCUcYv4MRn1zw/bhfp44U+Js
bTFdshisX2m1Ld0EL5Ev1Z679qOyvJrEoflj7JGCuAf/k2bQpipn3uyoQcUHIDBvr6jrXcLTdQBnfO/F
VTZdpIn3jfpuX5taIOCG9c1EEwHbSrQPtxLlx85V+/ShZrj8FL07cB1x6vzaNVCD/Y9sIHKdi6ZgHhwB
B9oWC9/hV59TREfiLuNzaO4ljOUz9gpxM06fTlP71qETRkiIV30aKiWDppD5P9MxU0zXgSReFP3T2ylO
tMwgfO/CgWgkGXkd4+XAd3KxNRkU38ol2A+VTW3Kgwy4eAttFwTztgJ1+yv+CghdZC03rjlJdP5O3/aH
N/baMSwUuJ0kOEWLh5ouQwziM0kMDJGJaHetO68lznzaTTi683VNMT/P2QU/vug8JaSM5AAmD2CR0pFL
jAWtIvB/n+j2fAGPjqrm6C23buiLa5/QK69C8R9McxhKqWIwY4o+ZIWnmGnmIYo+ccxwW4iYtvqqEyhr
OnF/7jFtP/DfdvImYazIHl2kopJfsCUxYipKrMgdCNM4F5rzr/6UIz33n73Hx8Qyl2k84jDpw5XxiB0Z
aFvDEkgyVNrHt4DdOe+4g6a/+yHtG/ONcEQVQa+vq5e79YbP7Hj4UEycMyYcfMVWwoKfubI160mRg7Zw
ZqEOdYuObmLeqBfgNIb3IIUc1pFAMpbZhvfGO19MhjOA5RDkRbcHxGjPifJruygA668UTQGs/0osaVR2
8OyFruT+Hh9xe0jyqLTGq93xx28ecwT10p71+CFVxfwcGoE7bsPCVB3C5DOxZ69c+5X1owpQqI2tL4vc
ABDLgFvC3FvR2o2Fnp+TXnwa3aT8TkrYL6U3Z2/lnJ+lKPZbfqsmGpPiAN0ekB/V0Rws5wjPnwLp6MoZ
vekRCGiLdMRfB4Qh8eNULX9SFypF48XqbUpcRSR2iMkqbiprjoxvKMMqgnt552bONmEKZm/ZGpHSTuJM
hfyii8gPt+IQynHn/p3h9hpCIARXsiJ/HVZi8FHiQypOoqwANP6yFiJAKj9jthlOdm+Rs9xnP9gpY0Zp
4QArvTPAzKDot+JwFQpoF87ns4BEBIaaIeV6yCjiZHKx9H5iTXOxatQo46+eEfaOQ5vUZA88xr6qjNAV
k3SMIZMwuH6WdYfmPxj+6z8+0PQ+aCe3a4+FlqXVhh8hJXg/ylr5NtYvFQiG7+cX9oHSneya0vjPYQO3
vSTfyJgjVS1zTaBRrPo9lVFJ+yI/8e3To3OyrboOk23L8qMFyUP6mCK8rt90wViBIwQ5x4rDfRXMhZSS
FShEBmy+c3y4eS4IuyDUf2USaUnGg9TAStl7+/7Pvzw/5d/Q8JKLgKksj/MVgCZcGPhLoFFGzrHIYVVl
Iew5sRlPgvdfAFtLIveNievHwSVrdj3Tdt8YcXxz/S1iRLk1MQHqJyjw0kGXhZy2It83ctSvevDf/6w6
szETjtHhwYNv9l6KZQxIfwwwO/iDI8af6SauWLEMco8L3tloBApM3jUIwdXelXGiw2TnYlW4t1QIsfO1
49ass28OFuyRTZeTgtIzgggiqrqv04Af7i60e7HJWSIc6onHzvAJhJ57UBTUkxjyShVbMbe2ZOkW7TEB
1tn8awzy2VzQfnMcq11XOqJVcAisOU5O0y6EkQffzQYoQNjHnbK3JM8HFvcgBEDZoqyNfSfcCEEyxaai
fxMFEBEP9LNI0Y6j/l7Dj3vrLPZ5ZlJGXMmiMw2tmrLFfs0rjvWPkvIpXBKBqMd+dzt78o4V19QzFCfm
3K0xK9ZCxHljbiqwR2abHvan2Fku9R/ULKXB4dw5o3umQs9pMbLBR+DNfvYP0S0MQLC3Ec/hAiE6AXRB
httMQi5OYn6yZ3YnR1fjNZeN2ga9QDziM9DyCd2+gEvzDLftJlSSp1tAkAE+b8LIYFKEHxGrvfNx+NPW
2G9H6c2q1ZbGidQ6YhIrpgBbgk/BFlXRUrDs0g1YJJN57p2k7V0Q1bgQVCeBNlUHqLPfFyYr7llOhxib
hFmjs5tqJpS/4YWsXJgKgZSnSI4wdFhGnI+3zMEcTgV09R9DrqrN55zbbOyHoUBA95f8d+IQ5+PqG269
B9vAUObvi9KRQjwFpLKnQE0m75Kd46+DaNv1Z126ugnE/+R+bZS4QhG/NAjqJoIQntOKRgHO/eS7kdVr
UUiNCfgpHvbOhdt/cQl5I5N6ooZU0fVM36OX1ugK5oWUOGRYAAAAAAs+rk4I5fZyAAHePIC0AQCzLaW5
scRn+wIAAAAABFla

1117
samples/VimL/solarized.vim Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -31,6 +31,8 @@ class TestTokenizer < Minitest::Test
assert_equal %w(foo), tokenize("foo\n# Comment")
assert_equal %w(foo bar), tokenize("foo\n# Comment\nbar")
assert_equal %w(foo), tokenize("foo\n// Comment")
assert_equal %w(foo), tokenize("foo\n-- Comment")
assert_equal %w(foo), tokenize("foo\n\" Comment")
assert_equal %w(foo), tokenize("foo /* Comment */")
assert_equal %w(foo), tokenize("foo /* \nComment\n */")
assert_equal %w(foo), tokenize("foo <!-- Comment -->")