mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 17:50:22 +00:00
Added new Rscript code
This commit is contained in:
101
samples/R/expr-dist
Executable file
101
samples/R/expr-dist
Executable file
@@ -0,0 +1,101 @@
|
||||
#!/usr/bin/env Rscript
|
||||
|
||||
# Copyright (c) 2013 Daniel S. Standage, released under MIT license
|
||||
#
|
||||
# expr-dist: plot distributions of expression values before and after
|
||||
# normalization; visually confirm that normalization worked
|
||||
# as expected
|
||||
#
|
||||
# Program input is a matrix of expression values, each row corresponding to a
|
||||
# molecule (gene, transcript, etc) and each row corresponding to that molecule's
|
||||
# expression level or abundance. The program expects the rows and columns to be
|
||||
# named, and was tested primarily on output produced by the
|
||||
# 'rsem-generate-data-matrix' script distributed with the RSEM package.
|
||||
#
|
||||
# The program plots the distributions of the logged expression values by sample
|
||||
# as provided, then normalizes the values, and finally plots the distribution of
|
||||
# the logged normalized expression values by sample. The expectation is that all
|
||||
# samples' distributions will have a similar shape but different medians prior
|
||||
# to normalization, and that post normalization they will all have an identical
|
||||
# median to facilitate cross-sample comparison.
|
||||
|
||||
|
||||
# MedianNorm function borrowed from the EBSeq library version 1.1.6
|
||||
# See http://www.bioconductor.org/packages/devel/bioc/html/EBSeq.html
|
||||
MedianNorm <- function(data)
|
||||
{
|
||||
geomeans <- exp( rowMeans(log(data)) )
|
||||
apply(data, 2, function(cnts) median((cnts/geomeans)[geomeans > 0]))
|
||||
}
|
||||
|
||||
library("getopt")
|
||||
print_usage <- function(file=stderr())
|
||||
{
|
||||
cat("
|
||||
expr-dist: see source code for full description
|
||||
Usage: expr-dist [options] < expr-matrix.txt
|
||||
Options:
|
||||
-h|--help: print this help message and exit
|
||||
-o|--out: STRING prefix for output files; default is 'expr-dist'
|
||||
-r|--res: INT resolution (dpi) of generated graphics; default is 150
|
||||
-t|--height: INT height (pixels) of generated graphics; default is 1200
|
||||
-w|--width: INT width (pixels) of generated graphics; default is 1200
|
||||
-y|--ylim: REAL the visible range of the Y axis depends on the first
|
||||
distribution plotted; if other distributions are getting
|
||||
cut off, use this setting to override the default\n\n")
|
||||
}
|
||||
|
||||
spec <- matrix( c("help", 'h', 0, "logical",
|
||||
"out", 'o', 1, "character",
|
||||
"res", 'r', 1, "integer",
|
||||
"height", 't', 1, "integer",
|
||||
"width", 'w', 1, "integer",
|
||||
"ylim", 'y', 1, "double"),
|
||||
byrow=TRUE, ncol=4)
|
||||
opt <- getopt(spec)
|
||||
if(!is.null(opt$help))
|
||||
{
|
||||
print_usage(file=stdout())
|
||||
q(status=1)
|
||||
}
|
||||
if(is.null(opt$height)) { opt$height <- 1200 }
|
||||
if(is.null(opt$out)) { opt$out <- "expr-dist" }
|
||||
if(is.null(opt$res)) { opt$res <- 150 }
|
||||
if(is.null(opt$width)) { opt$width <- 1200 }
|
||||
if(!is.null(opt$ylim)) { opt$ylim <- c(0, opt$ylim) }
|
||||
|
||||
# Load data, determine number of samples
|
||||
data <- read.table(file("stdin"), header=TRUE, sep="\t", quote="")
|
||||
nsamp <- dim(data)[2] - 1
|
||||
data <- data[,1:nsamp+1]
|
||||
|
||||
# Plot distribution of expression values before normalization
|
||||
outfile <- sprintf("%s-median.png", opt$out)
|
||||
png(outfile, height=opt$height, width=opt$width, res=opt$res)
|
||||
h <- hist(log(data[,1]), plot=FALSE)
|
||||
plot(h$mids, h$density, type="l", col=rainbow(nsamp)[1], main="",
|
||||
xlab="Log expression value", ylab="Proportion of molecules", ylim=opt$ylim)
|
||||
for(i in 2:nsamp)
|
||||
{
|
||||
h <- hist(log(data[,i]), plot=FALSE)
|
||||
lines(h$mids, h$density, col=rainbow(nsamp)[i])
|
||||
}
|
||||
devnum <- dev.off()
|
||||
|
||||
# Normalize by median
|
||||
size.factors <- MedianNorm(data.matrix(data))
|
||||
data.norm <- t(apply(data, 1, function(x){ x / size.factors }))
|
||||
|
||||
# Plot distribution of normalized expression values
|
||||
outfile <- sprintf("%s-median-norm.png", opt$out)
|
||||
png(outfile, height=opt$height, width=opt$width, res=opt$res)
|
||||
h <- hist(log(data.norm[,1]), plot=FALSE)
|
||||
plot(h$mids, h$density, type="l", col=rainbow(nsamp)[1], main="",
|
||||
xlab="Log normalized expression value", ylab="Proportion of molecules",
|
||||
ylim=opt$ylim)
|
||||
for(i in 2:nsamp)
|
||||
{
|
||||
h <- hist(log(data.norm[,i]), plot=FALSE)
|
||||
lines(h$mids, h$density, col=rainbow(nsamp)[i])
|
||||
}
|
||||
devnum <- dev.off()
|
||||
Reference in New Issue
Block a user