mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 17:50:22 +00:00
Merge pull request #125 from abevoelker/detect-coq-language
Add detection for the Coq language - fixes #116
This commit is contained in:
@@ -511,6 +511,17 @@ module Linguist
|
||||
end
|
||||
end
|
||||
|
||||
# Internal: Guess language of .v files.
|
||||
#
|
||||
# Returns a Language
|
||||
def guess_v_language
|
||||
if lines.grep(/^(\/\*|\/\/|module|parameter|input|output|wire|reg|always|initial|begin|\`)/).any?
|
||||
Language['Verilog']
|
||||
else
|
||||
Language['Coq']
|
||||
end
|
||||
end
|
||||
|
||||
# Internal: Guess language of .gsp files.
|
||||
#
|
||||
# Returns a Language.
|
||||
|
||||
@@ -220,6 +220,12 @@ Common Lisp:
|
||||
- .lisp
|
||||
- .ny
|
||||
|
||||
Coq:
|
||||
type: programming
|
||||
lexer: Coq
|
||||
extensions:
|
||||
- .v
|
||||
|
||||
Cpp-ObjDump:
|
||||
type: data
|
||||
lexer: cpp-objdump
|
||||
@@ -1063,6 +1069,8 @@ Vala:
|
||||
Verilog:
|
||||
type: programming
|
||||
lexer: verilog
|
||||
overrides:
|
||||
- .v
|
||||
extensions:
|
||||
- .v
|
||||
|
||||
|
||||
419
test/fixtures/interval_discr.v
vendored
Normal file
419
test/fixtures/interval_discr.v
vendored
Normal file
@@ -0,0 +1,419 @@
|
||||
(** Sketch of the proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m
|
||||
|
||||
- preliminary results on the irrelevance of boundedness proofs
|
||||
- introduce the notion of finite cardinal |A|
|
||||
- prove that |{p:nat|p<=n}| = n
|
||||
- prove that |A| = n /\ |A| = m -> n = m if equality is decidable on A
|
||||
- prove that equality is decidable on A
|
||||
- conclude
|
||||
*)
|
||||
|
||||
(** * Preliminary results on [nat] and [le] *)
|
||||
|
||||
(** Proving axiom K on [nat] *)
|
||||
|
||||
Require Import Eqdep_dec.
|
||||
Require Import Arith.
|
||||
|
||||
Theorem eq_rect_eq_nat :
|
||||
forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h.
|
||||
Proof.
|
||||
intros.
|
||||
apply K_dec_set with (p := h).
|
||||
apply eq_nat_dec.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** Proving unicity of proofs of [(n<=m)%nat] *)
|
||||
|
||||
Scheme le_ind' := Induction for le Sort Prop.
|
||||
|
||||
Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
|
||||
Proof.
|
||||
induction p using le_ind'; intro q.
|
||||
replace (le_n n) with
|
||||
(eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
|
||||
2:reflexivity.
|
||||
generalize (refl_equal n).
|
||||
pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
|
||||
rewrite <- eq_rect_eq_nat; trivial.
|
||||
contradiction (le_Sn_n m); rewrite <- e; assumption.
|
||||
replace (le_S n m p) with
|
||||
(eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
|
||||
2:reflexivity.
|
||||
generalize (refl_equal (S m)).
|
||||
pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
|
||||
contradiction (le_Sn_n m); rewrite Heq; assumption.
|
||||
injection HeqS; intro Heq; generalize l HeqS.
|
||||
rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat.
|
||||
rewrite (IHp l0); reflexivity.
|
||||
Qed.
|
||||
|
||||
(** Proving irrelevance of boundedness proofs while building
|
||||
elements of interval *)
|
||||
|
||||
Lemma dep_pair_intro :
|
||||
forall (n x y:nat) (Hx : x<=n) (Hy : y<=n), x=y ->
|
||||
exist (fun x => x <= n) x Hx = exist (fun x => x <= n) y Hy.
|
||||
Proof.
|
||||
intros n x y Hx Hy Heq.
|
||||
generalize Hy.
|
||||
rewrite <- Heq.
|
||||
intros.
|
||||
rewrite (le_uniqueness_proof x n Hx Hy0).
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** * Proving that {p:nat|p<=n} = {p:nat|p<=m} -> n=m *)
|
||||
|
||||
(** Definition of having finite cardinality [n+1] for a set [A] *)
|
||||
|
||||
Definition card (A:Set) n :=
|
||||
exists f,
|
||||
(forall x:A, f x <= n) /\
|
||||
(forall x y:A, f x = f y -> x = y) /\
|
||||
(forall m, m <= n -> exists x:A, f x = m).
|
||||
|
||||
Require Import Arith.
|
||||
|
||||
(** Showing that the interval [0;n] has cardinality [n+1] *)
|
||||
|
||||
Theorem card_interval : forall n, card {x:nat|x<=n} n.
|
||||
Proof.
|
||||
intro n.
|
||||
exists (fun x:{x:nat|x<=n} => proj1_sig x).
|
||||
split.
|
||||
(* bounded *)
|
||||
intro x; apply (proj2_sig x).
|
||||
split.
|
||||
(* injectivity *)
|
||||
intros (p,Hp) (q,Hq).
|
||||
simpl.
|
||||
intro Hpq.
|
||||
apply dep_pair_intro; assumption.
|
||||
(* surjectivity *)
|
||||
intros m Hmn.
|
||||
exists (exist (fun x : nat => x <= n) m Hmn).
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** Showing that equality on the interval [0;n] is decidable *)
|
||||
|
||||
Lemma interval_dec :
|
||||
forall n (x y : {m:nat|m<=n}), {x=y}+{x<>y}.
|
||||
Proof.
|
||||
intros n (p,Hp).
|
||||
induction p; intros ([|q],Hq).
|
||||
left.
|
||||
apply dep_pair_intro.
|
||||
reflexivity.
|
||||
right.
|
||||
intro H; discriminate H.
|
||||
right.
|
||||
intro H; discriminate H.
|
||||
assert (Hp' : p <= n).
|
||||
apply le_Sn_le; assumption.
|
||||
assert (Hq' : q <= n).
|
||||
apply le_Sn_le; assumption.
|
||||
destruct (IHp Hp' (exist (fun m => m <= n) q Hq'))
|
||||
as [Heq|Hneq].
|
||||
left.
|
||||
injection Heq; intro Heq'.
|
||||
apply dep_pair_intro.
|
||||
apply eq_S.
|
||||
assumption.
|
||||
right.
|
||||
intro HeqS.
|
||||
injection HeqS; intro Heq.
|
||||
apply Hneq.
|
||||
apply dep_pair_intro.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(** Showing that the cardinality relation is functional on decidable sets *)
|
||||
|
||||
Lemma card_inj_aux :
|
||||
forall (A:Type) f g n,
|
||||
(forall x:A, f x <= 0) ->
|
||||
(forall x y:A, f x = f y -> x = y) ->
|
||||
(forall m, m <= S n -> exists x:A, g x = m)
|
||||
-> False.
|
||||
Proof.
|
||||
intros A f g n Hfbound Hfinj Hgsurj.
|
||||
destruct (Hgsurj (S n) (le_n _)) as (x,Hx).
|
||||
destruct (Hgsurj n (le_S _ _ (le_n _))) as (x',Hx').
|
||||
assert (Hfx : 0 = f x).
|
||||
apply le_n_O_eq.
|
||||
apply Hfbound.
|
||||
assert (Hfx' : 0 = f x').
|
||||
apply le_n_O_eq.
|
||||
apply Hfbound.
|
||||
assert (x=x').
|
||||
apply Hfinj.
|
||||
rewrite <- Hfx.
|
||||
rewrite <- Hfx'.
|
||||
reflexivity.
|
||||
rewrite H in Hx.
|
||||
rewrite Hx' in Hx.
|
||||
apply (n_Sn _ Hx).
|
||||
Qed.
|
||||
|
||||
(** For [dec_restrict], we use a lemma on the negation of equality
|
||||
that requires proof-irrelevance. It should be possible to avoid this
|
||||
lemma by generalizing over a first-order definition of [x<>y], say
|
||||
[neq] such that [{x=y}+{neq x y}] and [~(x=y /\ neq x y)]; for such
|
||||
[neq], unicity of proofs could be proven *)
|
||||
|
||||
Require Import Classical.
|
||||
Lemma neq_dep_intro :
|
||||
forall (A:Set) (z x y:A) (p:x<>z) (q:y<>z), x=y ->
|
||||
exist (fun x => x <> z) x p = exist (fun x => x <> z) y q.
|
||||
Proof.
|
||||
intros A z x y p q Heq.
|
||||
generalize q; clear q; rewrite <- Heq; intro q.
|
||||
rewrite (proof_irrelevance _ p q); reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma dec_restrict :
|
||||
forall (A:Set),
|
||||
(forall x y :A, {x=y}+{x<>y}) ->
|
||||
forall z (x y :{a:A|a<>z}), {x=y}+{x<>y}.
|
||||
Proof.
|
||||
intros A Hdec z (x,Hx) (y,Hy).
|
||||
destruct (Hdec x y) as [Heq|Hneq].
|
||||
left; apply neq_dep_intro; assumption.
|
||||
right; intro Heq; injection Heq; exact Hneq.
|
||||
Qed.
|
||||
|
||||
Lemma pred_inj : forall n m,
|
||||
0 <> n -> 0 <> m -> pred m = pred n -> m = n.
|
||||
Proof.
|
||||
destruct n.
|
||||
intros m H; destruct H; reflexivity.
|
||||
destruct m.
|
||||
intros _ H; destruct H; reflexivity.
|
||||
simpl; intros _ _ H.
|
||||
rewrite H.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma le_neq_lt : forall n m, n <= m -> n<>m -> n < m.
|
||||
Proof.
|
||||
intros n m Hle Hneq.
|
||||
destruct (le_lt_eq_dec n m Hle).
|
||||
assumption.
|
||||
contradiction.
|
||||
Qed.
|
||||
|
||||
Lemma inj_restrict :
|
||||
forall (A:Set) (f:A->nat) x y z,
|
||||
(forall x y : A, f x = f y -> x = y)
|
||||
-> x <> z -> f y < f z -> f z <= f x
|
||||
-> pred (f x) = f y
|
||||
-> False.
|
||||
|
||||
(* Search error sans le type de f !! *)
|
||||
Proof.
|
||||
intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
|
||||
assert (f z <> f x).
|
||||
apply sym_not_eq.
|
||||
intro Heqf.
|
||||
apply Hneqx.
|
||||
apply Hfinj.
|
||||
assumption.
|
||||
assert (f x = S (f y)).
|
||||
assert (0 < f x).
|
||||
apply le_lt_trans with (f z).
|
||||
apply le_O_n.
|
||||
apply le_neq_lt; assumption.
|
||||
apply pred_inj.
|
||||
apply O_S.
|
||||
apply lt_O_neq; assumption.
|
||||
exact Heq.
|
||||
assert (f z <= f y).
|
||||
destruct (le_lt_or_eq _ _ Hfx).
|
||||
apply lt_n_Sm_le.
|
||||
rewrite <- H0.
|
||||
assumption.
|
||||
contradiction Hneqx.
|
||||
symmetry.
|
||||
apply Hfinj.
|
||||
assumption.
|
||||
contradiction (lt_not_le (f y) (f z)).
|
||||
Qed.
|
||||
|
||||
Theorem card_inj : forall m n (A:Set),
|
||||
(forall x y :A, {x=y}+{x<>y}) ->
|
||||
card A m -> card A n -> m = n.
|
||||
Proof.
|
||||
induction m; destruct n;
|
||||
intros A Hdec
|
||||
(f,(Hfbound,(Hfinj,Hfsurj)))
|
||||
(g,(Hgbound,(Hginj,Hgsurj))).
|
||||
(* 0/0 *)
|
||||
reflexivity.
|
||||
(* 0/Sm *)
|
||||
destruct (card_inj_aux _ _ _ _ Hfbound Hfinj Hgsurj).
|
||||
(* Sn/0 *)
|
||||
destruct (card_inj_aux _ _ _ _ Hgbound Hginj Hfsurj).
|
||||
(* Sn/Sm *)
|
||||
destruct (Hgsurj (S n) (le_n _)) as (xSn,HSnx).
|
||||
rewrite IHm with (n:=n) (A := {x:A|x<>xSn}).
|
||||
reflexivity.
|
||||
(* decidability of eq on {x:A|x<>xSm} *)
|
||||
apply dec_restrict.
|
||||
assumption.
|
||||
(* cardinality of {x:A|x<>xSn} is m *)
|
||||
pose (f' := fun x' : {x:A|x<>xSn} =>
|
||||
let (x,Hneq) := x' in
|
||||
if le_lt_dec (f xSn) (f x)
|
||||
then pred (f x)
|
||||
else f x).
|
||||
exists f'.
|
||||
split.
|
||||
(* f' is bounded *)
|
||||
unfold f'.
|
||||
intros (x,_).
|
||||
destruct (le_lt_dec (f xSn) (f x)) as [Hle|Hge].
|
||||
change m with (pred (S m)).
|
||||
apply le_pred.
|
||||
apply Hfbound.
|
||||
apply le_S_n.
|
||||
apply le_trans with (f xSn).
|
||||
exact Hge.
|
||||
apply Hfbound.
|
||||
split.
|
||||
(* f' is injective *)
|
||||
unfold f'.
|
||||
intros (x,Hneqx) (y,Hneqy) Heqf'.
|
||||
destruct (le_lt_dec (f xSn) (f x)) as [Hlefx|Hgefx];
|
||||
destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
|
||||
(* f xSn <= f x et f xSn <= f y *)
|
||||
assert (Heq : x = y).
|
||||
apply Hfinj.
|
||||
assert (f xSn <> f y).
|
||||
apply sym_not_eq.
|
||||
intro Heqf.
|
||||
apply Hneqy.
|
||||
apply Hfinj.
|
||||
assumption.
|
||||
assert (0 < f y).
|
||||
apply le_lt_trans with (f xSn).
|
||||
apply le_O_n.
|
||||
apply le_neq_lt; assumption.
|
||||
assert (f xSn <> f x).
|
||||
apply sym_not_eq.
|
||||
intro Heqf.
|
||||
apply Hneqx.
|
||||
apply Hfinj.
|
||||
assumption.
|
||||
assert (0 < f x).
|
||||
apply le_lt_trans with (f xSn).
|
||||
apply le_O_n.
|
||||
apply le_neq_lt; assumption.
|
||||
apply pred_inj.
|
||||
apply lt_O_neq; assumption.
|
||||
apply lt_O_neq; assumption.
|
||||
assumption.
|
||||
apply neq_dep_intro; assumption.
|
||||
(* f y < f xSn <= f x *)
|
||||
destruct (inj_restrict A f x y xSn); assumption.
|
||||
(* f x < f xSn <= f y *)
|
||||
symmetry in Heqf'.
|
||||
destruct (inj_restrict A f y x xSn); assumption.
|
||||
(* f x < f xSn et f y < f xSn *)
|
||||
assert (Heq : x=y).
|
||||
apply Hfinj; assumption.
|
||||
apply neq_dep_intro; assumption.
|
||||
(* f' is surjective *)
|
||||
intros p Hlep.
|
||||
destruct (le_lt_dec (f xSn) p) as [Hle|Hlt].
|
||||
(* case f xSn <= p *)
|
||||
destruct (Hfsurj (S p) (le_n_S _ _ Hlep)) as (x,Hx).
|
||||
assert (Hneq : x <> xSn).
|
||||
intro Heqx.
|
||||
rewrite Heqx in Hx.
|
||||
rewrite Hx in Hle.
|
||||
apply le_Sn_n with p; assumption.
|
||||
exists (exist (fun a => a<>xSn) x Hneq).
|
||||
unfold f'.
|
||||
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
|
||||
rewrite Hx; reflexivity.
|
||||
rewrite Hx in Hlt'.
|
||||
contradiction (le_not_lt (f xSn) p).
|
||||
apply lt_trans with (S p).
|
||||
apply lt_n_Sn.
|
||||
assumption.
|
||||
(* case p < f xSn *)
|
||||
destruct (Hfsurj p (le_S _ _ Hlep)) as (x,Hx).
|
||||
assert (Hneq : x <> xSn).
|
||||
intro Heqx.
|
||||
rewrite Heqx in Hx.
|
||||
rewrite Hx in Hlt.
|
||||
apply (lt_irrefl p).
|
||||
assumption.
|
||||
exists (exist (fun a => a<>xSn) x Hneq).
|
||||
unfold f'.
|
||||
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
|
||||
rewrite Hx in Hle'.
|
||||
contradiction (lt_irrefl p).
|
||||
apply lt_le_trans with (f xSn); assumption.
|
||||
assumption.
|
||||
(* cardinality of {x:A|x<>xSn} is n *)
|
||||
pose (g' := fun x' : {x:A|x<>xSn} =>
|
||||
let (x,Hneq) := x' in
|
||||
if Hdec x xSn then 0 else g x).
|
||||
exists g'.
|
||||
split.
|
||||
(* g is bounded *)
|
||||
unfold g'.
|
||||
intros (x,_).
|
||||
destruct (Hdec x xSn) as [_|Hneq].
|
||||
apply le_O_n.
|
||||
assert (Hle_gx:=Hgbound x).
|
||||
destruct (le_lt_or_eq _ _ Hle_gx).
|
||||
apply lt_n_Sm_le.
|
||||
assumption.
|
||||
contradiction Hneq.
|
||||
apply Hginj.
|
||||
rewrite HSnx.
|
||||
assumption.
|
||||
split.
|
||||
(* g is injective *)
|
||||
unfold g'.
|
||||
intros (x,Hneqx) (y,Hneqy) Heqg'.
|
||||
destruct (Hdec x xSn) as [Heqx|_].
|
||||
contradiction Hneqx.
|
||||
destruct (Hdec y xSn) as [Heqy|_].
|
||||
contradiction Hneqy.
|
||||
assert (Heq : x=y).
|
||||
apply Hginj; assumption.
|
||||
apply neq_dep_intro; assumption.
|
||||
(* g is surjective *)
|
||||
intros p Hlep.
|
||||
destruct (Hgsurj p (le_S _ _ Hlep)) as (x,Hx).
|
||||
assert (Hneq : x<>xSn).
|
||||
intro Heq.
|
||||
rewrite Heq in Hx.
|
||||
rewrite Hx in HSnx.
|
||||
rewrite HSnx in Hlep.
|
||||
contradiction (le_Sn_n _ Hlep).
|
||||
exists (exist (fun a => a<>xSn) x Hneq).
|
||||
simpl.
|
||||
destruct (Hdec x xSn) as [Heqx|_].
|
||||
contradiction Hneq.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(** Conclusion *)
|
||||
|
||||
Theorem interval_discr :
|
||||
forall n m, {p:nat|p<=n} = {p:nat|p<=m} -> n=m.
|
||||
Proof.
|
||||
intros n m Heq.
|
||||
apply card_inj with (A := {p:nat|p<=n}).
|
||||
apply interval_dec.
|
||||
apply card_interval.
|
||||
rewrite Heq.
|
||||
apply card_interval.
|
||||
Qed.
|
||||
86
test/fixtures/sha-256-functions.v
vendored
Normal file
86
test/fixtures/sha-256-functions.v
vendored
Normal file
@@ -0,0 +1,86 @@
|
||||
/*
|
||||
*
|
||||
* Copyright (c) 2011 fpgaminer@bitcoin-mining.com
|
||||
*
|
||||
*
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module e0 (x, y);
|
||||
|
||||
input [31:0] x;
|
||||
output [31:0] y;
|
||||
|
||||
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module e1 (x, y);
|
||||
|
||||
input [31:0] x;
|
||||
output [31:0] y;
|
||||
|
||||
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module ch (x, y, z, o);
|
||||
|
||||
input [31:0] x, y, z;
|
||||
output [31:0] o;
|
||||
|
||||
assign o = z ^ (x & (y ^ z));
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module maj (x, y, z, o);
|
||||
|
||||
input [31:0] x, y, z;
|
||||
output [31:0] o;
|
||||
|
||||
assign o = (x & y) | (z & (x | y));
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module s0 (x, y);
|
||||
|
||||
input [31:0] x;
|
||||
output [31:0] y;
|
||||
|
||||
assign y[31:29] = x[6:4] ^ x[17:15];
|
||||
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module s1 (x, y);
|
||||
|
||||
input [31:0] x;
|
||||
output [31:0] y;
|
||||
|
||||
assign y[31:22] = x[16:7] ^ x[18:9];
|
||||
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
@@ -306,6 +306,12 @@ class TestBlob < Test::Unit::TestCase
|
||||
assert_equal Language['Perl'], blob("perl-test.t").language
|
||||
assert_equal Language['Turing'], blob("turing.t").language
|
||||
|
||||
# .v disambiguation
|
||||
# https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner/blob/master/src/sha-256-functions.v
|
||||
assert_equal Language['Verilog'], blob("sha-256-functions.v").language
|
||||
# https://github.com/coq/coq/blob/trunk/doc/faq/interval_discr.v
|
||||
assert_equal Language['Coq'], blob("interval_discr.v").language
|
||||
|
||||
# ML
|
||||
assert_equal Language['OCaml'], blob("Foo.ml").language
|
||||
assert_equal Language['Standard ML'], blob("Foo.sig").language
|
||||
|
||||
@@ -23,6 +23,9 @@ class TestLanguage < Test::Unit::TestCase
|
||||
|
||||
assert Language.ambiguous?('.t')
|
||||
assert_equal Language['Perl'], Language.find_by_extension('t')
|
||||
|
||||
assert Language.ambiguous?('.v')
|
||||
assert_equal Language['Verilog'], Language.find_by_extension('v')
|
||||
end
|
||||
|
||||
def test_lexer
|
||||
@@ -34,6 +37,7 @@ class TestLanguage < Test::Unit::TestCase
|
||||
assert_equal Lexer['C'], Language['XS'].lexer
|
||||
assert_equal Lexer['C++'], Language['C++'].lexer
|
||||
assert_equal Lexer['Coldfusion HTML'], Language['ColdFusion'].lexer
|
||||
assert_equal Lexer['Coq'], Language['Coq'].lexer
|
||||
assert_equal Lexer['Fortran'], Language['FORTRAN'].lexer
|
||||
assert_equal Lexer['Gherkin'], Language['Cucumber'].lexer
|
||||
assert_equal Lexer['HTML'], Language['HTML'].lexer
|
||||
@@ -63,6 +67,7 @@ class TestLanguage < Test::Unit::TestCase
|
||||
assert_equal Lexer['Scheme'], Language['Scheme'].lexer
|
||||
assert_equal Lexer['TeX'], Language['TeX'].lexer
|
||||
assert_equal Lexer['Text only'], Language['Text'].lexer
|
||||
assert_equal Lexer['Verilog'], Language['Verilog'].lexer
|
||||
assert_equal Lexer['aspx-vb'], Language['ASP'].lexer
|
||||
assert_equal Lexer['haXe'], Language['HaXe'].lexer
|
||||
assert_equal Lexer['reStructuredText'], Language['reStructuredText'].lexer
|
||||
|
||||
Reference in New Issue
Block a user