Merge branch 'master' of https://github.com/github/linguist into origin/patch-1

* 'master' of https://github.com/github/linguist:
  Switch to Apache License.
  also add help for unapproved licenses
  Update X10 grammar license.
  add some help text to license test
  Fix typo in Obj-C heuristic keyword
  Add the X10 language (http://x10-lang.org/).
  Sublime Text workspace files as vendored
  Make Slick regexp more general
  Tests for new vendored files
  Test for new CodeMirror regexp
  New JS vendored files
  Fix CodeMirror regex for vendored files
  added *.lslp to samples/LSL folder
  added *.lslp as LSL(Linden Scripting Language)

Conflicts:
	.gitmodules
This commit is contained in:
Michael Fellinger
2015-08-28 14:08:31 -04:00
27 changed files with 1807 additions and 5 deletions

3
.gitmodules vendored
View File

@@ -677,3 +677,6 @@
[submodule "vendor/grammars/sublime-pony"]
path = vendor/grammars/sublime-pony
url = https://github.com/CausalityLtd/sublime-pony
[submodule "vendor/grammars/X10"]
path = vendor/grammars/X10
url = git@github.com:x10-lang/x10-highlighting.git

View File

@@ -144,6 +144,8 @@ vendor/grammars/VBDotNetSyntax:
- source.vbnet
vendor/grammars/Vala-TMBundle:
- source.vala
vendor/grammars/X10:
- source.x10
vendor/grammars/abap.tmbundle:
- source.abap
vendor/grammars/actionscript3-tmbundle:

View File

@@ -65,7 +65,7 @@ module Linguist
end
# Common heuristics
ObjectiveCRegex = /^[ \t]*@(interface|class|protocol|property|end|synchronised|selector|implementation)\b/
ObjectiveCRegex = /^[ \t]*@(interface|class|protocol|property|end|synchronized|selector|implementation)\b/
disambiguate ".bb" do |data|
if /^\s*; /.match(data) || data.include?("End Function")

View File

@@ -1719,6 +1719,7 @@ LSL:
ace_mode: lsl
extensions:
- .lsl
- .lslp
interpreters:
- lsl
color: '#3d9970'
@@ -3574,6 +3575,16 @@ WebIDL:
tm_scope: source.webidl
ace_mode: text
X10:
type: programming
aliases:
- xten
ace_mode: text
extensions:
- .x10
color: "#4B6BEF"
tm_scope: source.x10
XC:
type: programming
color: "#99DA07"

View File

@@ -78,6 +78,9 @@
# Haxelib projects often contain a neko bytecode file named run.n
- run.n$
# Bootstrap Datepicker
- bootstrap-datepicker/
## Commonly Bundled JavaScript frameworks ##
# jQuery
@@ -88,6 +91,34 @@
- (^|/)jquery\-ui(\-\d\.\d+(\.\d+)?)?(\.\w+)?\.(js|css)$
- (^|/)jquery\.(ui|effects)\.([^.]*)\.(js|css)$
# jQuery Gantt
- jquery.fn.gantt.js
# jQuery fancyBox
- jquery.fancybox.js
# Fuel UX
- fuelux.js
# jQuery File Upload
- (^|/)jquery\.fileupload(-\w+)?\.js$
# Slick
- (^|/)slick\.\w+.js$
# Leaflet plugins
- (^|/)Leaflet\.Coordinates-\d+\.\d+\.\d+\.src\.js$
- leaflet.draw-src.js
- leaflet.draw.css
- Control.FullScreen.css
- Control.FullScreen.js
- leaflet.spin.js
- wicket-leaflet.js
# Sublime Text workspace files
- .sublime-project
- .sublime-workspace
# Prototype
- (^|/)prototype(.*)\.js$
- (^|/)effects\.js$
@@ -122,7 +153,7 @@
- (^|/)Chart\.js$
# Codemirror
- (^|/)[Cc]ode[Mm]irror/(lib|mode|theme|addon|keymap|demo)
- (^|/)[Cc]ode[Mm]irror/(\d+\.\d+/)?(lib|mode|theme|addon|keymap|demo)
# SyntaxHighlighter - http://alexgorbatchev.com/
- (^|/)shBrush([^.]*)\.js$

74
samples/LSL/LSL.lslp Normal file
View File

@@ -0,0 +1,74 @@
/*
Testing syntax highlighting
for the Linden Scripting Language
*/
integer someIntNormal = 3672;
integer someIntHex = 0x00000000;
integer someIntMath = PI_BY_TWO;
integer event = 5673;// 'event' is invalid.illegal
key someKeyTexture = TEXTURE_DEFAULT;
string someStringSpecial = EOF;
some_user_defined_function_without_return_type(string inputAsString)
{
llSay(PUBLIC_CHANNEL, inputAsString);
}
string user_defined_function_returning_a_string(key inputAsKey)
{
return (string)inputAsKey;
}
default
{
state_entry()
{
key someKey = NULL_KEY;
someKey = llGetOwner();
string someString = user_defined_function_returning_a_string(someKey);
some_user_defined_function_without_return_type(someString);
}
touch_start(integer num_detected)
{
list agentsInRegion = llGetAgentList(AGENT_LIST_REGION, []);
integer numOfAgents = llGetListLength(agentsInRegion);
integer index; // defaults to 0
for (; index <= numOfAgents - 1; index++) // for each agent in region
{
llRegionSayTo(llList2Key(agentsInRegion, index), PUBLIC_CHANNEL, "Hello, Avatar!");
}
}
touch_end(integer num_detected)
{
someIntNormal = 3672;
someIntHex = 0x00000000;
someIntMath = PI_BY_TWO;
event = 5673;// 'event' is invalid.illegal
someKeyTexture = TEXTURE_DEFAULT;
someStringSpecial = EOF;
llSetInventoryPermMask("some item", MASK_NEXT, PERM_ALL);// 'llSetInventoryPermMask' is reserved.godmode
llWhisper(PUBLIC_CHANNEL, "Leaving \"default\" now...");
state other;
}
}
state other
{
state_entry()
{
llWhisper(PUBLIC_CHANNEL, "Entered \"state other\", returning to \"default\" again...");
state default;
}
}

72
samples/X10/ArraySum.x10 Normal file
View File

@@ -0,0 +1,72 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
/**
* A simple illustration of loop parallelization within a single place.
*/
public class ArraySum {
var sum:Long;
val data:Rail[Long];
public def this(n:Long) {
// Create a Rail with n elements (0..(n-1)), all initialized to 1.
data = new Rail[Long](n, 1);
sum = 0;
}
def sum(a:Rail[Long], start:Long, last:Long) {
var mySum: Long = 0;
for (i in start..(last-1)) {
mySum += a(i);
}
return mySum;
}
def sum(numThreads:Long) {
val mySize = data.size/numThreads;
finish for (p in 0..(numThreads-1)) async {
val mySum = sum(data, p*mySize, (p+1)*mySize);
// Multiple activities will simultaneously update
// this location -- so use an atomic operation.
atomic sum += mySum;
}
}
public static def main(args:Rail[String]) {
var size:Long = 5*1000*1000;
if (args.size >=1)
size = Long.parse(args(0));
Console.OUT.println("Initializing.");
val a = new ArraySum(size);
val P = [1,2,4];
//warmup loop
Console.OUT.println("Warming up.");
for (numThreads in P)
a.sum(numThreads);
for (numThreads in P) {
Console.OUT.println("Starting with " + numThreads + " threads.");
a.sum=0;
var time: long = - System.nanoTime();
a.sum(numThreads);
time += System.nanoTime();
Console.OUT.println("For p=" + numThreads
+ " result: " + a.sum
+ ((size==a.sum)? " ok" : " bad")
+ " (time=" + (time/(1000*1000)) + " ms)");
}
}
}

View File

@@ -0,0 +1,50 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.xrx.Runtime;
/**
* Demonstrate how to instantiate the X10 runtime as an executor service
* submit jobs to the runtime, wait jobs to complete and cancel all jobs
*
* Compile with: x10c -O -EXECUTOR_MODE=true Cancellation.x10
* Run with: X10_CANCELLABLE=true X10_NPLACES=4 x10 -DX10RT_IMPL=JavaSockets Cancellation
*/
class Cancellation {
static def job(id:Long, iterations:Long) = ()=>{
at (Place.places().next(here)) async {
for (i in 1..iterations) {
finish for (p in Place.places()) {
at (p) async Console.OUT.println(here+" says hello (job " + id + ", iteration " + i + ")");
}
Console.ERR.println();
System.sleep(200);
}
}
};
public static def main(args:Rail[String]):void {
val w1 = Runtime.submit(job(1, 5));
w1.await(); Console.ERR.println("Job 1 completed\n");
val w2 = Runtime.submit(job(2, 1000));
System.threadSleep(1000);
val c1 = Runtime.cancelAll();
try { w2.await(); } catch (e:Exception) { Console.ERR.println("Job 2 aborted with exception " + e +"\n"); }
c1.await(); // waiting for cancellation to be processed
System.threadSleep(1000);
Runtime.submit(job(3, 1000));
Runtime.submit(job(4, 1000));
System.threadSleep(1000);
val c2 = Runtime.cancelAll();
c2.await();
Console.ERR.println("Goodbye\n");
}
}

52
samples/X10/Fibonacci.x10 Normal file
View File

@@ -0,0 +1,52 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
/**
* This is a small program to illustrate the use of
* <code>async</code> and <code>finish</code> in a
* prototypical recursive divide-and-conquer algorithm.
* It is obviously not intended to show a efficient way to
* compute Fibonacci numbers in X10.<p>
*
* The heart of the example is the <code>run</code> method,
* which directly embodies the recursive definition of
* <pre>
* fib(n) = fib(n-1)+fib(n-2);
* </pre>
* by using an <code>async</code> to compute <code>fib(n-1)</code> while
* the current activity computes <code>fib(n-2)</code>. A <code>finish</code>
* is used to ensure that both computations are complete before
* their results are added together to compute <code>fib(n)</code>
*/
public class Fibonacci {
public static def fib(n:long) {
if (n<=2) return 1;
val f1:long;
val f2:long;
finish {
async { f1 = fib(n-1); }
f2 = fib(n-2);
}
return f1 + f2;
}
public static def main(args:Rail[String]) {
val n = (args.size > 0) ? Long.parse(args(0)) : 10;
Console.OUT.println("Computing fib("+n+")");
val f = fib(n);
Console.OUT.println("fib("+n+") = "+f);
}
}

View File

@@ -0,0 +1,86 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.array.*;
import x10.compiler.Foreach;
import x10.compiler.Inline;
/**
* This is a sample program illustrating how to use
* X10's array classes. It also illustrates the use
* of foreach to acheive intra-place parallelism.
*
* The program solves a set of 2D partial differential
* equations by iteratively applying a 5-point stencil
* operation until convergence is reached.
*/
public class HeatTransfer_v0 {
static val EPSILON = 1.0e-5;
val N:Long;
val A:Array_2[Double]{self!=null};
val Tmp:Array_2[Double]{self!=null};
public def this(size:Long) {
N = size;
A = new Array_2[Double](N+2, N+2); // zero-initialized N+2 * N+2 array of doubles
for (j in 1..N) A(0, j) = 1; // set one border row to 1
Tmp = new Array_2[Double](A);
}
final @Inline def stencil(x:Long, y:Long):Double {
return (A(x-1,y) + A(x+1,y) + A(x,y-1) + A(x,y+1)) / 4;
}
def run() {
val is = new DenseIterationSpace_2(1,1,N,N);
var delta:Double;
do {
// Compute new values, storing in tmp
delta = Foreach.blockReduce(is,
(i:Long, j:Long)=>{
Tmp(i,j) = stencil(i,j);
// Reduce max element-wise delta (A now holds previous values)
return Math.abs(Tmp(i,j) - A(i,j));
},
(a:Double, b:Double)=>Math.max(a,b), 0.0
);
// swap backing data of A and Tmp
Array.swap(A, Tmp);
} while (delta > EPSILON);
}
def prettyPrintResult() {
for (i in 1..N) {
for (j in 1..N) {
Console.OUT.printf("%1.4f ",A(i,j));
}
Console.OUT.println();
}
}
public static def main(args:Rail[String]) {
val n = args.size > 0 ? Long.parse(args(0)) : 8;
Console.OUT.println("HeatTransfer example with N="+n+" and epsilon="+EPSILON);
Console.OUT.println("Initializing data structures");
val ht = new HeatTransfer_v0(n);
Console.OUT.println("Beginning computation...");
val start = System.nanoTime();
ht.run();
val stop = System.nanoTime();
Console.OUT.printf("...completed in %1.3f seconds.\n", ((stop-start) as double)/1e9);
if (n <= 10) {
ht.prettyPrintResult();
}
}
}

View File

@@ -0,0 +1,114 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.array.*;
import x10.compiler.Foreach;
import x10.util.Team;
/**
* This is a sample program illustrating how to use
* X10's distributed array classes. It also illustrates the use
* of foreach to achieve intra-place parallelism and the mixture
* of APGAS finish/async/at with Team collective operations.
*
* This version of the program uses a vanilla DistArray without
* ghost regions. As a result, the stencil function does
* inefficient fine-grained neighbor communication to get individual values.
* Compare this to HeatTransfer_v2 which utilizes ghost regions and
* bulk ghost-region exchange functions.
*
* The program solves a set of 2D partial differential
* equations by iteratively applying a 5-point stencil
* operation until convergence is reached.
*/
public class HeatTransfer_v1 {
static val EPSILON = 1.0e-5;
val N:Long;
val A:DistArray_BlockBlock_2[Double]{self!=null};
val Tmp:DistArray_BlockBlock_2[Double]{self!=null};
public def this(size:Long) {
N = size;
val init = (i:Long, j:Long)=>i==0 ? 1.0 : 0.0;
A = new DistArray_BlockBlock_2[Double](N+2, N+2, init);
Tmp = new DistArray_BlockBlock_2[Double](N+2, N+2, init);
}
final def stencil(x:Long, y:Long):Double {
val cls = (dx:Long, dy:Long)=>{
val p = A.place(x+dx, y+dy);
p == here ? A(x+dx,y+dy) : at (p) A(x+dx,y+dy)
};
val tmp = cls(-1,0) + cls(1,0) + cls(0,-1) + cls(0,1);
return tmp / 4;
}
def run() {
val myTeam = new Team(A.placeGroup());
finish for (p in A.placeGroup()) at (p) async {
// Compute the subset of the local indices on which
// we want to apply the stencil (the interior points of the N+2 x N+2 grid)
val li = A.localIndices();
val interior = new DenseIterationSpace_2(li.min(0) == 0 ? 1 : li.min(0),
li.min(1) == 0 ? 1 : li.min(1),
li.max(0) == N+1 ? N : li.max(0),
li.max(1) == N+1 ? N : li.max(1));
var delta:Double;
do {
// Compute new values, storing in tmp
val myDelta = Foreach.blockReduce(interior,
(i:Long, j:Long)=>{
Tmp(i,j) = stencil(i,j);
// Reduce max element-wise delta (A now holds previous values)
return Math.abs(Tmp(i,j) - A(i,j));
},
(a:Double, b:Double)=>Math.max(a,b), 0.0
);
myTeam.barrier();
// Unlike Array, DistArray doesn't provide an optimized swap.
// So, until it does, we have to copy the data elements.
Foreach.block(interior, (i:Long, j:Long)=>{
A(i,j) = Tmp(i,j);
});
delta = myTeam.allreduce(myDelta, Team.MAX);
} while (delta > EPSILON);
}
}
def prettyPrintResult() {
for (i in 1..N) {
for (j in 1..N) {
val x = at (A.place(i,j)) A(i,j);
Console.OUT.printf("%1.4f ", x);
}
Console.OUT.println();
}
}
public static def main(args:Rail[String]) {
val n = args.size > 0 ? Long.parse(args(0)) : 8;
Console.OUT.println("HeatTransfer example with N="+n+" and epsilon="+EPSILON);
Console.OUT.println("Initializing data structures");
val ht = new HeatTransfer_v1(n);
Console.OUT.println("Beginning computation...");
val start = System.nanoTime();
ht.run();
val stop = System.nanoTime();
Console.OUT.printf("...completed in %1.3f seconds.\n", ((stop-start) as double)/1e9);
if (n <= 10) {
ht.prettyPrintResult();
}
}
}

View File

@@ -0,0 +1,44 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
/**
* The classic hello world program, with a twist - prints a message
* from the command line at every Place.
* The messages from each Place may appear in any order, but the
* finish ensures that the last message printed will be "Goodbye"
* <pre>
* Typical output:
* [dgrove@linchen samples]$ ./HelloWholeWorld 'best wishes'
* Place(1) says hello and best wishes
* Place(2) says hello and best wishes
* Place(3) says hello and best wishes
* Place(0) says hello and best wishes
* Goodbye
* [dgrove@linchen samples]$
* </pre>
*/
class HelloWholeWorld {
public static def main(args:Rail[String]):void {
if (args.size < 1) {
Console.OUT.println("Usage: HelloWholeWorld message");
return;
}
finish for (p in Place.places()) {
at (p) async Console.OUT.println(here+" says hello and "+args(0));
}
Console.OUT.println("Goodbye");
}
}

View File

@@ -0,0 +1,23 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
/**
* The classic hello world program, shows how to output to the console.
*/
class HelloWorld {
public static def main(Rail[String]) {
Console.OUT.println("Hello World!" );
}
}

45
samples/X10/Histogram.x10 Normal file
View File

@@ -0,0 +1,45 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
public class Histogram {
public static def compute(data:Rail[Int], numBins:Int) {
val bins = new Rail[Int](numBins);
finish for (i in data.range) async {
val b = data(i) % numBins;
atomic bins(b)++;
}
return bins;
}
public static def run(N:Int, S:Int):Boolean {
val a = new Rail[Int](N, (i:long)=> i as int);
val b = compute(a, S);
val v = b(0);
var ok:Boolean = true;
for (x in b.range) ok &= (b(x)==v);
return ok;
}
public static def main(args:Rail[String]) {
if (args.size != 2L) {
Console.OUT.println("Usage: Histogram SizeOfArray NumberOfBins");
return;
}
val N = Int.parse(args(0));
val S = Int.parse(args(1));
val ok = run(N,S);
if (ok) {
Console.OUT.println("Test ok.");
} else {
Console.OUT.println("Test failed.");
}
}
}

55
samples/X10/Integrate.x10 Normal file
View File

@@ -0,0 +1,55 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
/**
* This is a slightly more realistic example of the
* basic computational pattern of using async/finish
* to express recursive divide-and-conquer algorithms.
* The program does integration via Guassian Quadrature.
* <p>
* It also can serve as an example of using a closure.
*/
public class Integrate {
static val epsilon = 1.0e-9;
val fun:(double)=>double;
public def this(f:(double)=>double) { fun = f; }
public def computeArea(left:double, right:double) {
return recEval(left, fun(left), right, fun(right), 0);
}
private def recEval(l:double, fl:double, r:double, fr:double, a:double) {
val h = (r - l) / 2;
val hh = h / 2;
val c = l + h;
val fc = fun(c);
val al = (fl + fc) * hh;
val ar = (fr + fc) * hh;
val alr = al + ar;
if (Math.abs(alr - a) < epsilon) return alr;
val expr1:double;
val expr2:double;
finish {
async { expr1 = recEval(c, fc, r, fr, ar); };
expr2 = recEval(l, fl, c, fc, al);
}
return expr1 + expr2;
}
public static def main(args:Rail[String]) {
val obj = new Integrate((x:double)=>(x*x + 1.0) * x);
val xMax = args.size > 0 ? Long.parse(args(0)) : 10;
val area = obj.computeArea(0, xMax);
Console.OUT.println("The area of (x*x +1) * x from 0 to "+xMax+" is "+area);
}
}

151
samples/X10/KMeans.x10 Normal file
View File

@@ -0,0 +1,151 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
import x10.util.Random;
/**
* A KMeans object o can compute K means of a given set of
* points of dimension o.myDim.
* <p>
* This class implements a sequential program, that is readily parallelizable.
*
* For a scalable, high-performance version of this benchmark see
* KMeans.x10 in the X10 Benchmarks (separate download from x10-lang.org)
*/
public class KMeans(myDim:Long) {
static val DIM=2;
static val K=4;
static val POINTS=2000;
static val ITERATIONS=50;
static val EPS=0.01F;
static type ValVector(k:Long) = Rail[Float]{self.size==k};
static type ValVector = ValVector(DIM);
static type Vector(k:Long) = Rail[Float]{self.size==k};
static type Vector = Vector(DIM);
static type SumVector(d:Long) = V{self.dim==d};
static type SumVector = SumVector(DIM);
/**
* V represents the sum of 'count' number of vectors of dimension 'dim'.
*/
static class V(dim:Long) implements (Long)=>Float {
var vec: Vector(dim);
var count:Int;
def this(dim:Long, init:(Long)=>Float): SumVector(dim) {
property(dim);
vec = new Rail[Float](this.dim, init);
count = 0n;
}
public operator this(i:Long) = vec(i);
def makeZero() {
for (i in 0..(dim-1))
vec(i) =0.0F;
count=0n;
}
def addIn(a:ValVector(dim)) {
for (i in 0..(dim-1))
vec(i) += a(i);
count++;
}
def div(f:Int) {
for (i in 0..(dim-1))
vec(i) /= f;
}
def dist(a:ValVector(dim)):Float {
var dist:Float=0.0F;
for (i in 0..(dim-1)) {
val tmp = vec(i)-a(i);
dist += tmp*tmp;
}
return dist;
}
def dist(a:SumVector(dim)):Float {
var dist:Float=0.0F;
for (i in 0..(dim-1)) {
val tmp = vec(i)-a(i);
dist += tmp*tmp;
}
return dist;
}
def print() {
Console.OUT.println();
for (i in 0..(dim-1)) {
Console.OUT.print((i>0? " " : "") + vec(i));
}
}
def normalize() { div(count);}
def count() = count;
}
def this(myDim:Long):KMeans{self.myDim==myDim} {
property(myDim);
}
static type KMeansData(myK:Long, myDim:Long)= Rail[SumVector(myDim)]{self.size==myK};
/**
* Compute myK means for the given set of points of dimension myDim.
*/
def computeMeans(myK:Long, points:Rail[ValVector(myDim)]):KMeansData(myK, myDim) {
var redCluster : KMeansData(myK, myDim) =
new Rail[SumVector(myDim)](myK, (i:long)=> new V(myDim, (j:long)=>points(i)(j)));
var blackCluster: KMeansData(myK, myDim) =
new Rail[SumVector(myDim)](myK, (i:long)=> new V(myDim, (j:long)=>0.0F));
for (i in 1..ITERATIONS) {
val tmp = redCluster;
redCluster = blackCluster;
blackCluster=tmp;
for (p in 0..(POINTS-1)) {
var closest:Long = -1;
var closestDist:Float = Float.MAX_VALUE;
val point = points(p);
for (k in 0..(myK-1)) { // compute closest mean in cluster.
val dist = blackCluster(k).dist(point);
if (dist < closestDist) {
closestDist = dist;
closest = k;
}
}
redCluster(closest).addIn(point);
}
for (k in 0..(myK-1))
redCluster(k).normalize();
var b:Boolean = true;
for (k in 0..(myK-1)) {
if (redCluster(k).dist(blackCluster(k)) > EPS) {
b=false;
break;
}
}
if (b)
break;
for (k in 0..(myK-1))
blackCluster(k).makeZero();
}
return redCluster;
}
public static def main (Rail[String]) {
val rnd = new Random(0);
val points = new Rail[ValVector](POINTS,
(long)=>new Rail[Float](DIM, (long)=>rnd.nextFloat()));
val result = new KMeans(DIM).computeMeans(K, points);
for (k in 0..(K-1)) result(k).print();
}
}
// vim: shiftwidth=4:tabstop=4:expandtab

147
samples/X10/KMeansDist.x10 Normal file
View File

@@ -0,0 +1,147 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.array.*;
import x10.io.Console;
import x10.util.Random;
/**
* A low performance formulation of distributed KMeans using fine-grained asyncs.
*
* For a highly optimized and scalable, version of this benchmark see
* KMeans.x10 in the X10 Benchmarks (separate download from x10-lang.org)
*/
public class KMeansDist {
static val DIM=2;
static val CLUSTERS=4;
static val POINTS=2000;
static val ITERATIONS=50;
public static def main (Rail[String]) {
val world = Place.places();
val local_curr_clusters =
PlaceLocalHandle.make[Array_2[Float]](world, () => new Array_2[Float](CLUSTERS, DIM));
val local_new_clusters =
PlaceLocalHandle.make[Array_2[Float]](world, () => new Array_2[Float](CLUSTERS, DIM));
val local_cluster_counts =
PlaceLocalHandle.make[Rail[Int]](world, ()=> new Rail[Int](CLUSTERS));
val rnd = PlaceLocalHandle.make[Random](world, () => new Random(0));
val points = new DistArray_Block_2[Float](POINTS, DIM, world, (Long,Long)=>rnd().nextFloat());
val central_clusters = new Array_2[Float](CLUSTERS, DIM, (i:Long, j:Long) => {
at (points.place(i,j)) points(i,j)
});
val old_central_clusters = new Array_2[Float](CLUSTERS, DIM);
val central_cluster_counts = new Rail[Int](CLUSTERS);
for (iter in 1..ITERATIONS) {
Console.OUT.println("Iteration: "+iter);
finish {
// reset state
for (d in world) at (d) async {
for ([i,j] in central_clusters.indices()) {
local_curr_clusters()(i, j) = central_clusters(i, j);
local_new_clusters()(i, j) = 0f;
}
local_cluster_counts().clear();
}
}
finish {
// compute new clusters and counters
for (p in 0..(POINTS-1)) {
at (points.place(p,0)) async {
var closest:Long = -1;
var closest_dist:Float = Float.MAX_VALUE;
for (k in 0..(CLUSTERS-1)) {
var dist : Float = 0;
for (d in 0..(DIM-1)) {
val tmp = points(p,d) - local_curr_clusters()(k, d);
dist += tmp * tmp;
}
if (dist < closest_dist) {
closest_dist = dist;
closest = k;
}
}
atomic {
for (d in 0..(DIM-1)) {
local_new_clusters()(closest,d) += points(p,d);
}
local_cluster_counts()(closest)++;
}
}
}
}
for ([i,j] in old_central_clusters.indices()) {
old_central_clusters(i, j) = central_clusters(i, j);
central_clusters(i, j) = 0f;
}
central_cluster_counts.clear();
finish {
val central_clusters_gr = GlobalRef(central_clusters);
val central_cluster_counts_gr = GlobalRef(central_cluster_counts);
val there = here;
for (d in world) at (d) async {
// access PlaceLocalHandles 'here' and then data will be captured by at and transfered to 'there' for accumulation
val tmp_new_clusters = local_new_clusters();
val tmp_cluster_counts = local_cluster_counts();
at (there) atomic {
for ([i,j] in tmp_new_clusters.indices()) {
central_clusters_gr()(i,j) += tmp_new_clusters(i,j);
}
for (j in 0..(CLUSTERS-1)) {
central_cluster_counts_gr()(j) += tmp_cluster_counts(j);
}
}
}
}
for (k in 0..(CLUSTERS-1)) {
for (d in 0..(DIM-1)) {
central_clusters(k, d) /= central_cluster_counts(k);
}
}
// TEST FOR CONVERGENCE
var b:Boolean = true;
for ([i,j] in old_central_clusters.indices()) {
if (Math.abs(old_central_clusters(i, j)-central_clusters(i, j))>0.0001) {
b = false;
break;
}
}
if (b) break;
}
for (d in 0..(DIM-1)) {
for (k in 0..(CLUSTERS-1)) {
if (k>0)
Console.OUT.print(" ");
Console.OUT.print(central_clusters(k,d));
}
Console.OUT.println();
}
}
}
// vim: shiftwidth=4:tabstop=4:expandtab

View File

@@ -0,0 +1,144 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2015.
*/
import x10.array.Array;
import x10.array.Array_2;
import x10.compiler.Foreach;
import x10.util.Random;
/**
* A better formulation of distributed KMeans using coarse-grained asyncs to
* implement an allreduce pattern for cluster centers and counts.
*
* For a highly optimized and scalable, version of this benchmark see
* KMeans.x10 in the X10 Benchmarks (separate download from x10-lang.org)
*/
public class KMeansDistPlh {
static val DIM=2;
static val CLUSTERS=4;
static class ClusterState {
val clusters = new Array_2[Float](CLUSTERS, DIM);
val clusterCounts = new Rail[Int](CLUSTERS);
}
public static def main(args:Rail[String]) {
val numPoints = args.size > 0 ? Long.parse(args(0)) : 2000;
val iterations = args.size > 1 ? Long.parse(args(1)) : 50;
val world = Place.places();
val clusterStatePlh = PlaceLocalHandle.make[ClusterState](world, () => new ClusterState());
val currentClustersPlh = PlaceLocalHandle.make[Array_2[Float]](world, () => new Array_2[Float](CLUSTERS, DIM));
val pointsPlh = PlaceLocalHandle.make[Array_2[Float]](world, () => {
val rand = new Random(here.id);
return new Array_2[Float](numPoints/world.size(), DIM, (Long,Long)=>rand.nextFloat());
});
val centralCurrentClusters = new Array_2[Float](CLUSTERS, DIM);
val centralNewClusters = new Array_2[Float](CLUSTERS, DIM);
val centralClusterCounts = new Rail[Int](CLUSTERS);
// arbitrarily initialize central clusters to first few points
for ([i,j] in centralCurrentClusters.indices()) {
centralCurrentClusters(i,j) = pointsPlh()(i,j);
}
for (iter in 1..iterations) {
Console.OUT.println("Iteration: "+iter);
finish {
for (place in world) async {
val placeClusters = at(place) {
val currentClusters = currentClustersPlh();
Array.copy(centralCurrentClusters, currentClusters);
val clusterState = clusterStatePlh();
val newClusters = clusterState.clusters;
newClusters.clear();
val clusterCounts = clusterState.clusterCounts;
clusterCounts.clear();
// compute new clusters and counters
val points = pointsPlh();
for (p in 0..(points.numElems_1-1)) {
var closest:Long = -1;
var closestDist:Float = Float.MAX_VALUE;
for (k in 0..(CLUSTERS-1)) {
var dist : Float = 0;
for (d in 0..(DIM-1)) {
val tmp = points(p,d) - currentClusters(k, d);
dist += tmp * tmp;
}
if (dist < closestDist) {
closestDist = dist;
closest = k;
}
}
atomic {
for (d in 0..(DIM-1)) {
newClusters(closest,d) += points(p,d);
}
clusterCounts(closest)++;
}
}
clusterState
};
// combine place clusters to central
atomic {
for ([i,j] in centralNewClusters.indices()) {
centralNewClusters(i,j) += placeClusters.clusters(i,j);
}
for (j in 0..(CLUSTERS-1)) {
centralClusterCounts(j) += placeClusters.clusterCounts(j);
}
}
}
}
for (k in 0..(CLUSTERS-1)) {
for (d in 0..(DIM-1)) {
centralNewClusters(k, d) /= centralClusterCounts(k);
}
}
// TEST FOR CONVERGENCE
var b:Boolean = true;
for ([i,j] in centralCurrentClusters.indices()) {
if (Math.abs(centralCurrentClusters(i, j)-centralNewClusters(i, j)) > 0.0001) {
b = false;
break;
}
}
Array.copy(centralNewClusters, centralCurrentClusters);
if (b) break;
centralNewClusters.clear();
centralClusterCounts.clear();
}
for (d in 0..(DIM-1)) {
for (k in 0..(CLUSTERS-1)) {
if (k > 0)
Console.OUT.print(" ");
Console.OUT.print(centralCurrentClusters(k,d));
}
Console.OUT.println();
}
}
}
// vim: shiftwidth=4:tabstop=4:expandtab

192
samples/X10/KMeansSPMD.x10 Normal file
View File

@@ -0,0 +1,192 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
import x10.io.File;
import x10.io.Marshal;
import x10.io.IOException;
import x10.util.OptionsParser;
import x10.util.Option;
import x10.util.Team;
/**
* An SPMD formulation of KMeans.
*
* For a highly optimized and scalable version of this benchmark see
* KMeans.x10 in the X10 Benchmarks (separate download from x10-lang.org)
*/
public class KMeansSPMD {
public static def printClusters (clusters:Rail[Float], dims:long) {
for (d in 0..(dims-1)) {
for (k in 0..(clusters.size/dims-1)) {
if (k>0)
Console.OUT.print(" ");
Console.OUT.print(clusters(k*dims+d).toString());
}
Console.OUT.println();
}
}
public static def main (args:Rail[String]) {here == Place.FIRST_PLACE } {
val opts = new OptionsParser(args, [
Option("q","quiet","just print time taken"),
Option("v","verbose","print out each iteration"),
Option("h","help","this information")
], [
Option("p","points","location of data file"),
Option("i","iterations","quit after this many iterations"),
Option("c","clusters","number of clusters to find"),
Option("d","dim","number of dimensions"),
Option("s","slices","factor by which to oversubscribe computational resources"),
Option("n","num","quantity of points")
]);
if (opts.filteredArgs().size!=0L) {
Console.ERR.println("Unexpected arguments: "+opts.filteredArgs());
Console.ERR.println("Use -h or --help.");
System.setExitCode(1n);
return;
}
if (opts("-h")) {
Console.OUT.println(opts.usage(""));
return;
}
val fname = opts("-p", "points.dat");
val num_clusters=opts("-c",4);
val num_slices=opts("-s",1);
val num_global_points=opts("-n", 2000);
val iterations=opts("-i",50);
val dim=opts("-d", 4);
val verbose = opts("-v");
val quiet = opts("-q");
if (!quiet)
Console.OUT.println("points: "+num_global_points+" clusters: "+num_clusters+" dim: "+dim);
// file is dimension-major
val file = new File(fname);
val fr = file.openRead();
val init_points = (long) => Float.fromIntBits(Marshal.INT.read(fr).reverseBytes());
val num_file_points = (file.size() / dim / 4) as Int;
val file_points = new Rail[Float](num_file_points*dim, init_points);
val team = Team.WORLD;
val num_slice_points = num_global_points / num_slices / Place.numPlaces();
finish {
for (h in Place.places()) at(h) async {
var compute_time:Long = 0;
var comm_time:Long = 0;
var barrier_time:Long = 0;
val host_clusters = new Rail[Float](num_clusters*dim, (i:long)=>file_points(i));
val host_cluster_counts = new Rail[Int](num_clusters);
for (slice in 0..(num_slices-1)) {
// carve out local portion of points (point-major)
val offset = (slice*Place.numPlaces() + here.id) * num_slice_points;
if (verbose)
Console.OUT.println(h.toString()+" gets "+offset+" len "+num_slice_points);
val init = (i:long) => {
val p=i%num_slice_points;
val d=i/num_slice_points;
return file_points(offset+p+d*num_file_points);
};
// these are pretty big so allocate up front
val host_points = new Rail[Float](num_slice_points*dim, init);
val host_nearest = new Rail[Float](num_slice_points);
val start_time = System.currentTimeMillis();
barrier_time -= System.nanoTime();
team.barrier();
barrier_time += System.nanoTime();
main_loop: for (iter in 0..(iterations-1)) {
//if (offset==0) Console.OUT.println("Iteration: "+iter);
val old_clusters = new Rail[Float](host_clusters.size);
Rail.copy(host_clusters, 0L, old_clusters, 0L, host_clusters.size);
host_clusters.clear();
host_cluster_counts.clear();
compute_time -= System.nanoTime();
for (p in 0..(num_slice_points-1)) {
var closest:Long = -1;
var closest_dist:Float = Float.MAX_VALUE;
for (k in 0..(num_clusters-1)) {
var dist : Float = 0;
for (d in 0..(dim-1)) {
val tmp = host_points(p+d*num_slice_points) - old_clusters(k*dim+d);
dist += tmp * tmp;
}
if (dist < closest_dist) {
closest_dist = dist;
closest = k;
}
}
for (d in 0..(dim-1)) {
host_clusters(closest*dim+d) += host_points(p+d*num_slice_points);
}
host_cluster_counts(closest)++;
}
compute_time += System.nanoTime();
comm_time -= System.nanoTime();
team.allreduce(host_clusters, 0L, host_clusters, 0L, host_clusters.size, Team.ADD);
team.allreduce(host_cluster_counts, 0L, host_cluster_counts, 0L, host_cluster_counts.size, Team.ADD);
comm_time += System.nanoTime();
for (k in 0..(num_clusters-1)) {
for (d in 0..(dim-1)) host_clusters(k*dim+d) /= host_cluster_counts(k);
}
if (offset==0 && verbose) {
Console.OUT.println("Iteration: "+iter);
printClusters(host_clusters,dim);
}
// TEST FOR CONVERGENCE
for (j in 0..(num_clusters*dim-1)) {
if (true/*||Math.abs(clusters_old(j)-host_clusters(j))>0.0001*/) continue main_loop;
}
break;
} // main_loop
} // slice
Console.OUT.printf("%d: computation %.3f s communication %.3f s (barrier %.3f s)\n",
here.id, compute_time/1E9, comm_time/1E9, barrier_time/1E9);
team.barrier();
if (here.id == 0) {
Console.OUT.println("\nFinal results:");
printClusters(host_clusters,dim);
}
} // async
} // finish
}
}
// vim: shiftwidth=4:tabstop=4:expandtab

42
samples/X10/MontyPi.x10 Normal file
View File

@@ -0,0 +1,42 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.array.DistArray_Unique;
import x10.io.Console;
import x10.util.Random;
/**
* Calculation of an approximation to pi by using a Monte Carlo simulation
* (throwing darts into the unit square and determining the fraction that land
* in the unit circle).
*/
public class MontyPi {
public static def main(args:Rail[String]) {
if (args.size != 1L) {
Console.OUT.println("Usage: MontyPi <number of points>");
return;
}
val N = Long.parse(args(0));
val initializer = () => {
val r = new Random();
var result:Long = 0;
for(c in 1..N) {
val x = r.nextDouble();
val y = r.nextDouble();
if (x*x +y*y <= 1.0) result++;
}
result
};
val result = new DistArray_Unique[Long](Place.places(), initializer);
val pi = (4.0*result.reduce((x:Long,y:Long) => x+y, 0) as Double)/(N*Place.numPlaces());
Console.OUT.println("The value of pi is " + pi);
}
}

123
samples/X10/NQueensDist.x10 Normal file
View File

@@ -0,0 +1,123 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
* (C) Copyright Australian National University 2011.
*/
import x10.array.DistArray_Unique;
/**
* A distributed version of NQueens. Runs over NUM_PLACES.
* Identical to NQueensPar, except that work is distributed
* over multiple places rather than shared between threads.
*/
public class NQueensDist {
public static val EXPECTED_SOLUTIONS =
[0, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 2279184, 14772512];
val N:Long;
val P:Long;
val results:DistArray_Unique[Long];
val R:LongRange;
def this(N:Long, P:Long) {
this.N=N;
this.P=P;
this.results = new DistArray_Unique[Long]();
this.R = 0..(N-1);
}
def start() {
new Board().distSearch();
}
def run():Long {
finish start();
val result = results.reduce(((x:Long,y:Long) => x+y),0);
return result;
}
class Board {
val q: Rail[Long];
/** The number of low-rank positions that are fixed in this board for the purposes of search. */
var fixed:Long;
def this() {
q = new Rail[Long](N);
fixed = 0;
}
/**
* @return true if it is safe to put a queen in file <code>j</code>
* on the next rank after the last fixed position.
*/
def safe(j:Long) {
for (k in 0..(fixed-1)) {
if (j == q(k) || Math.abs(fixed-k) == Math.abs(j-q(k)))
return false;
}
return true;
}
/** Search all positions for the current board. */
def search() {
for (k in R) searchOne(k);
}
/**
* Modify the current board by adding a new queen
* in file <code>k</code> on rank <code>fixed</code>,
* and search for all safe positions with this prefix.
*/
def searchOne(k:Long) {
if (safe(k)) {
if (fixed==(N-1)) {
// all ranks safely filled
atomic NQueensDist.this.results(here.id)++;
} else {
q(fixed++) = k;
search();
fixed--;
}
}
}
/**
* Search this board, dividing the work between all places
* using a block distribution of the current free rank.
*/
def distSearch() {
val work = R.split(Place.numPlaces());
finish for (p in Place.places()) {
val myPiece = work(p.id);
at (p) async {
// implicit copy of 'this' made across the at divide
for (k in myPiece) {
searchOne(k);
}
}
}
}
}
public static def main(args:Rail[String]) {
val n = args.size > 0 ? Long.parse(args(0)) : 8;
Console.OUT.println("N=" + n);
//warmup
//finish new NQueensPar(12, 1).start();
val P = Place.numPlaces();
val nq = new NQueensDist(n,P);
var start:Long = -System.nanoTime();
val answer = nq.run();
val result = answer==EXPECTED_SOLUTIONS(n);
start += System.nanoTime();
start /= 1000000;
Console.OUT.println("NQueensDist " + nq.N + "(P=" + P +
") has " + answer + " solutions" +
(result? " (ok)." : " (wrong).") +
"time=" + start + "ms");
}
}

117
samples/X10/NQueensPar.x10 Normal file
View File

@@ -0,0 +1,117 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
* (C) Copyright Australian National University 2011.
*/
/**
* Compute the number of solutions to the N queens problem.
*/
public class NQueensPar {
public static val EXPECTED_SOLUTIONS =
[0, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 2279184, 14772512];
val N:Int;
val P:Int;
var nSolutions:Int = 0n;
val R:IntRange;
def this(N:Int, P:Int) {
this.N=N;
this.P=P;
this.R = 0n..(N-1n);
}
def start() {
new Board().parSearch();
}
class Board {
val q: Rail[Int];
/** The number of low-rank positions that are fixed in this board for the purposes of search. */
var fixed:Int;
def this() {
q = new Rail[Int](N);
fixed = 0n;
}
def this(b:Board) {
this.q = new Rail[Int](b.q);
this.fixed = b.fixed;
}
/**
* @return true if it is safe to put a queen in file <code>j</code>
* on the next rank after the last fixed position.
*/
def safe(j:Int) {
for (k in 0n..(fixed-1n)) {
if (j == q(k) || Math.abs(fixed-k) == Math.abs(j-q(k)))
return false;
}
return true;
}
/** Search all positions for the current board. */
def search() {
for (k in R) searchOne(k);
}
/**
* Modify the current board by adding a new queen
* in file <code>k</code> on rank <code>fixed</code>,
* and search for all safe positions with this prefix.
*/
def searchOne(k:Int) {
if (safe(k)) {
if (fixed==(N-1n)) {
// all ranks safely filled
atomic NQueensPar.this.nSolutions++;
} else {
q(fixed++) = k;
search();
fixed--;
}
}
}
/**
* Search this board, dividing the work between threads
* using a block distribution of the current free rank.
*/
def parSearch() {
for (work in R.split(P)) async {
val board = new Board(this);
for (w in work) {
board.searchOne(w);
}
}
}
}
public static def main(args:Rail[String]) {
val n = args.size > 0 ? Int.parse(args(0)) : 8n;
Console.OUT.println("N=" + n);
//warmup
//finish new NQueensPar(12, 1).start();
val ps = [1n,2n,4n];
for (numTasks in ps) {
Console.OUT.println("starting " + numTasks + " tasks");
val nq = new NQueensPar(n,numTasks);
var start:Long = -System.nanoTime();
finish nq.start();
val result = (nq.nSolutions as Long)==EXPECTED_SOLUTIONS(nq.N);
start += System.nanoTime();
start /= 1000000;
Console.OUT.println("NQueensPar " + nq.N + "(P=" + numTasks +
") has " + nq.nSolutions + " solutions" +
(result? " (ok)." : " (wrong).") + "time=" + start + "ms");
}
}
}

73
samples/X10/QSort.x10 Normal file
View File

@@ -0,0 +1,73 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
/**
* Straightforward quicksort implementation using
* naive partition-in-the-middle and not bothering with
* well-known optimizations such as using insertion sort
* once the partitions get small. This is only intended
* as a simple example of an array-based program that
* combines a recirsive divide and conquer algorithm
* with async and finish, not as a highly efficient
* sorting procedure..
*/
public class QSort {
private static def partition(data:Rail[int], left:long, right:long) {
var i:long = left;
var j:long = right;
var tmp:int;
var pivot:long = data((left + right) / 2);
while (i <= j) {
while (data(i) < pivot) i++;
while (data(j) > pivot) j--;
if (i <= j) {
tmp = data(i);
data(i) = data(j);
data(j) = tmp;
i++;
j--;
}
}
return i;
}
public static def qsort(data:Rail[int], left:long, right:long) {
index:long = partition(data, left, right);
finish {
if (left < index - 1)
async qsort(data, left, index - 1);
if (index < right)
qsort(data, index, right);
}
}
public static def main(args:Rail[String]) {
val N = args.size>0 ? Long.parse(args(0)) : 100;
val r = new x10.util.Random();
val data = new Rail[int](N, (long)=>r.nextInt(9999n));
qsort(data, 0, N-1);
for (i in 0..(N-1)) {
Console.OUT.print(data(i));
if (i%10 == 9) {
Console.OUT.println();
} else {
Console.OUT.print(", ");
}
}
Console.OUT.println();
}
}

View File

@@ -0,0 +1,123 @@
/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
import x10.util.Random;
/**
* This class represents a real-world problem in graphics engines --
* determining which objects in a large sprawling world are close enough to the
* camera to be considered for rendering.
*
* It illustrates the usage of X10 structs to define new primitive types.
* In Native X10, structs are allocated within their containing object/stack frame
* and thus using structs instead of classes for Vector3 and WorldObject greatly
* improves the memory efficiency of the computation.
*
* @Author Dave Cunningham
* @Author Vijay Saraswat
*/
class StructSpheres {
static type Real = Float;
static struct Vector3(x:Real, y:Real, z:Real) {
public def getX () = x;
public def getY () = y;
public def getZ () = z;
public def add (other:Vector3)
= Vector3(this.x+other.x, this.y+other.y, this.z+other.z);
public def neg () = Vector3(-this.x, -this.y, -this.z);
public def sub (other:Vector3) = add(other.neg());
public def length () = Math.sqrtf(length2());
public def length2 () = x*x + y*y + z*z;
}
static struct WorldObject {
def this (x:Real, y:Real, z:Real, r:Real) {
pos = Vector3(x,y,z);
renderingDistance = r;
}
public def intersects (home:Vector3)
= home.sub(pos).length2() < renderingDistance*renderingDistance;
protected val pos:Vector3;
protected val renderingDistance:Real;
}
public static def compute():boolean {
val reps = 7500;
// The following correspond to a modern out-door computer game:
val num_objects = 50000;
val world_size = 6000;
val obj_max_size = 400;
val ran = new Random(0);
// the array can go on the heap
// but the elements ought to be /*inlined*/ in the array
val spheres =
new Rail[WorldObject](num_objects, (i:long) => {
val x = (ran.nextDouble()*world_size) as Real;
val y = (ran.nextDouble()*world_size) as Real;
val z = (ran.nextDouble()*world_size) as Real;
val r = (ran.nextDouble()*obj_max_size) as Real;
return WorldObject(x,y,z,r);
});
val time_start = System.nanoTime();
var counter : Long = 0;
// HOT LOOP BEGINS
for (c in 1..reps) {
val x = (ran.nextDouble()*world_size) as Real;
val y = (ran.nextDouble()*world_size) as Real;
val z = (ran.nextDouble()*world_size) as Real;
val pos = Vector3(x,y,z);
for (i in spheres.range()) {
if (spheres(i).intersects(pos)) {
counter++;
}
}
}
// HOT LOOP ENDS
val time_taken = System.nanoTime() - time_start;
Console.OUT.println("Total time: "+time_taken/1E9);
val expected = 109702;
val ok = counter == expected;
if (!ok) {
Console.ERR.println("number of intersections: "+counter
+" (expected "+expected+")");
}
return ok;
}
public static def main (Rail[String]) {
compute();
}
}

View File

@@ -301,6 +301,7 @@ class TestBlob < Minitest::Test
# Codemirror deps
assert sample_blob("codemirror/mode/blah.js").vendored?
assert sample_blob("codemirror/5.0/mode/blah.js").vendored?
# Debian packaging
assert sample_blob("debian/cron.d").vendored?
@@ -361,6 +362,26 @@ class TestBlob < Minitest::Test
assert sample_blob("ui/minified/jquery.effects.blind.min.js").vendored?
assert sample_blob("ui/minified/jquery.ui.accordion.min.js").vendored?
# jQuery Gantt
assert sample_blob("web-app/jquery-gantt/js/jquery.fn.gantt.js").vendored?
# jQuery fancyBox
assert sample_blob("web-app/fancybox/jquery.fancybox.js").vendored?
# Fuel UX
assert sample_blob("web-app/fuelux/js/fuelux.js").vendored?
# jQuery File Upload
assert sample_blob("fileupload-9.0.0/jquery.fileupload-process.js").vendored?
# Slick
assert sample_blob("web-app/slickgrid/controls/slick.columnpicker.js").vendored?
# Leaflet plugins
assert sample_blob("leaflet-plugins/Leaflet.Coordinates-0.5.0.src.js").vendored?
assert sample_blob("leaflet-plugins/leaflet.draw-src.js").vendored?
assert sample_blob("leaflet-plugins/leaflet.spin.js").vendored?
# MooTools
assert sample_blob("public/javascripts/mootools-core-1.3.2-full-compat.js").vendored?
assert sample_blob("public/javascripts/mootools-core-1.3.2-full-compat-yc.js").vendored?

View File

@@ -83,17 +83,23 @@ class TestGrammars < Minitest::Test
def test_submodules_have_recognized_licenses
unrecognized = submodule_licenses.select { |k,v| v.nil? && Licensee::Project.new(k).license_file }
unrecognized.reject! { |k,v| PROJECT_WHITELIST.include?(k) }
assert_equal Hash.new, unrecognized, "The following submodules have unrecognized licenses:\n* #{unrecognized.keys.join("\n* ")}"
message = "The following submodules have unrecognized licenses:\n* #{unrecognized.keys.join("\n* ")}\n"
message << "Please ensure that the project's LICENSE file contains the full text of the license."
assert_equal Hash.new, unrecognized, message
end
def test_submodules_have_licenses
unlicensed = submodule_licenses.select { |k,v| v.nil? }.reject { |k,v| PROJECT_WHITELIST.include?(k) }
assert_equal Hash.new, unlicensed, "The following submodules don't have licenses:\n* #{unlicensed.keys.join("\n* ")}"
message = "The following submodules don't have licenses:\n* #{unlicensed.keys.join("\n* ")}\n"
message << "Please ensure that the project has a LICENSE file, and that the LICENSE file contains the full text of the license."
assert_equal Hash.new, unlicensed, message
end
def test_submodules_have_approved_licenses
unapproved = submodule_licenses.reject { |k,v| LICENSE_WHITELIST.include?(v) || PROJECT_WHITELIST.include?(k) }.map { |k,v| "#{k}: #{v}"}
assert_equal [], unapproved, "The following submodules have unapproved licenses:\n* #{unapproved.join("\n* ")}"
message = "The following submodules have unapproved licenses:\n* #{unapproved.join("\n* ")}\n"
message << "The license must be added to the LICENSE_WHITELIST in /test/test_grammars.rb once approved."
assert_equal [], unapproved, message
end
def test_submodules_whitelist_has_no_extra_entries

1
vendor/grammars/X10 vendored Submodule

Submodule vendor/grammars/X10 added at 2bae6e77fa