Sample sagews file, as requested

This commit is contained in:
David Abián
2015-01-11 22:08:56 +01:00
parent 1bc6a6dfe5
commit ef4b25591b

View File

@@ -0,0 +1,136 @@
# -*- coding: utf-8 -*-
#
# Funciones en Python/Sage para el trabajo con polinomios con una
# incógnita (x).
#
# Copyright (C) 2014-2015, David Abián <davidabian [at] davidabian.com>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>.
def pols (grado=-1, K=GF(2), mostrar=False):
"""Devuelve la lista de polinomios constantes y no constantes de
coeficientes mónicos y grado igual o menor que el especificado.
Si el grado indicado no es válido, devuelve una lista vacía.
"""
lpols = []
if not grado.is_integer():
grado = grado.round()
if grado >= 0:
var('x')
xs = vector([(x^i) for i in range(grado+1)])
V = VectorSpace(K,grado+1)
lpols = [cs*xs for cs in V]
if mostrar:
for pol in lpols:
print pol
return lpols
def polsNoCtes (grado=-1, K=GF(2), mostrar=False):
"""Devuelve la lista de polinomios no constantes de coeficientes mónicos y
grado igual o menor que el especificado.
Si el grado indicado no es válido, devuelve una lista vacía.
"""
lpols = []
if not grado.is_integer():
grado = grado.round()
if grado >= 0:
var('x')
xs = vector([(x^i) for i in range(grado+1)])
for cs in K^(grado+1):
if cs[:grado] != vector(grado*[0]): # no constantes
lpols += [cs*xs]
if mostrar:
for pol in lpols:
print pol
return lpols
def polsMismoGrado (grado=-1, K=GF(2), mostrar=False):
"""Devuelve la lista de polinomios de coeficientes mónicos del grado
especificado.
Si el grado indicado no es válido, devuelve una lista vacía.
"""
lpols = []
if not grado.is_integer():
grado = grado.round()
if grado >= 0:
var('x')
xs = vector([(x^(grado-i)) for i in [0..grado]])
for cs in K^(grado+1):
if cs[0] != 0: # polinomios del mismo grado
lpols += [cs*xs]
if mostrar:
for pol in lpols:
print pol
return lpols
def excluirReducibles (lpols=[], mostrar=False):
"""Filtra una lista dada de polinomios de coeficientes mónicos y devuelve
aquellos irreducibles.
"""
var('x')
irreds = []
for p in lpols:
fp = (p.factor_list())
if len(fp) == 1 and fp[0][1] == 1:
irreds += [p]
if mostrar:
for pol in irreds:
print pol
return irreds
def vecPol (vec=random_vector(GF(2),0)):
"""Transforma los coeficientes dados en forma de vector en el polinomio
que representan.
Por ejemplo, con vecPol(vector([1,0,3,1])) se obtiene x³ + 3*x + 1.
Para la función opuesta, véase polVec().
"""
var('x')
xs = vector([x^(len(vec)-1-i) for i in range(len(vec))])
return vec*xs
def polVec (p=None):
"""Devuelve el vector de coeficientes del polinomio dado que acompañan a la
incógnita x, de mayor a menor grado.
Por ejemplo, con polVec(x^3 + 3*x + 1) se obtiene el vector (1, 0, 3, 1).
Para la función opuesta, véase vecPol().
"""
cs = []
if p != None:
var('x')
p(x) = p
for i in [0..p(x).degree(x)]:
cs.append(p(x).coefficient(x,i))
cs = list(reversed(cs))
return vector(cs)
def completar2 (p=0):
"""Aplica el método de completar cuadrados en parábolas al polinomio dado de
grado 2 y lo devuelve en su nueva forma.
Si el polinomio dado no es válido, devuelve 0.
Por ejemplo, con complCuad(3*x^2 + 12*x + 5) se obtiene 3*(x + 2)^2 - 7.
"""
var('x')
p(x) = p.expand()
if p(x).degree(x) != 2:
p(x) = 0
else:
cs = polVec(p(x))
p(x) = cs[0]*(x+(cs[1]/(2*cs[0])))^2+(4*cs[0]*cs[2]-cs[1]^2)/(4*cs[0])
return p(x)