Files
linguist/samples/GAP/vspc.gi
2014-04-05 13:26:41 +02:00

652 lines
19 KiB
Plaintext

#############################################################################
##
#W vspc.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for vector spaces.
##
#############################################################################
##
#M SetLeftActingDomain( <extL>, <D> )
##
## check whether the left acting domain <D> of the external left set <extL>
## knows that it is a division ring.
## This is used, e.g., to tell a free module over a division ring
## that it is a vector space.
##
InstallOtherMethod( SetLeftActingDomain,
"method to set also 'IsLeftActedOnByDivisionRing'",
[ IsAttributeStoringRep and IsLeftActedOnByRing, IsObject ],0,
function( extL, D )
if HasIsDivisionRing( D ) and IsDivisionRing( D ) then
SetIsLeftActedOnByDivisionRing( extL, true );
fi;
TryNextMethod();
end );
#############################################################################
##
#M IsLeftActedOnByDivisionRing( <M> )
##
InstallMethod( IsLeftActedOnByDivisionRing,
"method for external left set that is left acted on by a ring",
[ IsExtLSet and IsLeftActedOnByRing ],
function( M )
if IsIdenticalObj( M, LeftActingDomain( M ) ) then
TryNextMethod();
else
return IsDivisionRing( LeftActingDomain( M ) );
fi;
end );
#############################################################################
##
#F VectorSpace( <F>, <gens>[, <zero>][, "basis"] )
##
## The only difference between `VectorSpace' and `FreeLeftModule' shall be
## that the left acting domain of a vector space must be a division ring.
##
InstallGlobalFunction( VectorSpace, function( arg )
if Length( arg ) = 0 or not IsDivisionRing( arg[1] ) then
Error( "usage: VectorSpace( <F>, <gens>[, <zero>][, \"basis\"] )" );
fi;
return CallFuncList( FreeLeftModule, arg );
end );
#############################################################################
##
#M AsSubspace( <V>, <C> ) . . . . . . . for a vector space and a collection
##
InstallMethod( AsSubspace,
"for a vector space and a collection",
[ IsVectorSpace, IsCollection ],
function( V, C )
local newC;
if not IsSubset( V, C ) then
return fail;
fi;
newC:= AsVectorSpace( LeftActingDomain( V ), C );
if newC = fail then
return fail;
fi;
SetParent( newC, V );
UseIsomorphismRelation( C, newC );
UseSubsetRelation( C, newC );
return newC;
end );
#############################################################################
##
#M AsLeftModule( <F>, <V> ) . . . . . . for division ring and vector space
##
## View the vector space <V> as a vector space over the division ring <F>.
##
InstallMethod( AsLeftModule,
"method for a division ring and a vector space",
[ IsDivisionRing, IsVectorSpace ],
function( F, V )
local W, # the space, result
base, # basis vectors of field extension
gen, # loop over generators of 'V'
b, # loop over 'base'
gens, # generators of 'V'
newgens; # extended list of generators
if Characteristic( F ) <> Characteristic( LeftActingDomain( V ) ) then
# This is impossible.
return fail;
elif F = LeftActingDomain( V ) then
# No change of the left acting domain is necessary.
return V;
elif IsSubset( F, LeftActingDomain( V ) ) then
# Check whether 'V' is really a space over the bigger field,
# that is, whether the set of elements does not change.
base:= BasisVectors( Basis( AsField( LeftActingDomain( V ), F ) ) );
for gen in GeneratorsOfLeftModule( V ) do
for b in base do
if not b * gen in V then
# The field extension would change the set of elements.
return fail;
fi;
od;
od;
# Construct the space.
W:= LeftModuleByGenerators( F, GeneratorsOfLeftModule(V), Zero(V) );
elif IsSubset( LeftActingDomain( V ), F ) then
# View 'V' as a space over a smaller field.
# For that, the list of generators must be extended.
gens:= GeneratorsOfLeftModule( V );
if IsEmpty( gens ) then
W:= LeftModuleByGenerators( F, [], Zero( V ) );
else
base:= BasisVectors( Basis( AsField( F, LeftActingDomain( V ) ) ) );
newgens:= [];
for b in base do
for gen in gens do
Add( newgens, b * gen );
od;
od;
W:= LeftModuleByGenerators( F, newgens );
fi;
else
# View 'V' first as space over the intersection of fields,
# and then over the desired field.
return AsLeftModule( F,
AsLeftModule( Intersection( F,
LeftActingDomain( V ) ), V ) );
fi;
UseIsomorphismRelation( V, W );
UseSubsetRelation( V, W );
return W;
end );
#############################################################################
##
#M ViewObj( <V> ) . . . . . . . . . . . . . . . . . . . view a vector space
##
## print left acting domain, if known also dimension or no. of generators
##
InstallMethod( ViewObj,
"for vector space with known generators",
[ IsVectorSpace and HasGeneratorsOfLeftModule ],
function( V )
Print( "<vector space over ", LeftActingDomain( V ), ", with ",
Length( GeneratorsOfLeftModule( V ) ), " generators>" );
end );
InstallMethod( ViewObj,
"for vector space with known dimension",
[ IsVectorSpace and HasDimension ],
1, # override method for known generators
function( V )
Print( "<vector space of dimension ", Dimension( V ),
" over ", LeftActingDomain( V ), ">" );
end );
InstallMethod( ViewObj,
"for vector space",
[ IsVectorSpace ],
function( V )
Print( "<vector space over ", LeftActingDomain( V ), ">" );
end );
#############################################################################
##
#M PrintObj( <V> ) . . . . . . . . . . . . . . . . . . . for a vector space
##
InstallMethod( PrintObj,
"method for vector space with left module generators",
[ IsVectorSpace and HasGeneratorsOfLeftModule ],
function( V )
Print( "VectorSpace( ", LeftActingDomain( V ), ", ",
GeneratorsOfLeftModule( V ) );
if IsEmpty( GeneratorsOfLeftModule( V ) ) and HasZero( V ) then
Print( ", ", Zero( V ), " )" );
else
Print( " )" );
fi;
end );
InstallMethod( PrintObj,
"method for vector space",
[ IsVectorSpace ],
function( V )
Print( "VectorSpace( ", LeftActingDomain( V ), ", ... )" );
end );
#############################################################################
##
#M \/( <V>, <W> ) . . . . . . . . . factor of a vector space by a subspace
#M \/( <V>, <vectors> ) . . . . . . factor of a vector space by a subspace
##
InstallOtherMethod( \/,
"method for vector space and collection",
IsIdenticalObj,
[ IsVectorSpace, IsCollection ],
function( V, vectors )
if IsVectorSpace( vectors ) then
TryNextMethod();
else
return V / Subspace( V, vectors );
fi;
end );
InstallOtherMethod( \/,
"generic method for two vector spaces",
IsIdenticalObj,
[ IsVectorSpace, IsVectorSpace ],
function( V, W )
return ImagesSource( NaturalHomomorphismBySubspace( V, W ) );
end );
#############################################################################
##
#M Intersection2Spaces( <AsStruct>, <Substruct>, <Struct> )
##
InstallGlobalFunction( Intersection2Spaces,
function( AsStructure, Substructure, Structure )
return function( V, W )
local inters, # intersection, result
F, # coefficients field
gensV, # list of generators of 'V'
gensW, # list of generators of 'W'
VW, # sum of 'V' and 'W'
B; # basis of 'VW'
if LeftActingDomain( V ) <> LeftActingDomain( W ) then
# Compute the intersection as vector space over the intersection
# of the coefficients fields.
# (Note that the characteristic is the same.)
F:= Intersection2( LeftActingDomain( V ), LeftActingDomain( W ) );
return Intersection2( AsStructure( F, V ), AsStructure( F, W ) );
elif IsFiniteDimensional( V ) and IsFiniteDimensional( W ) then
# Compute the intersection of two spaces over the same field.
gensV:= GeneratorsOfLeftModule( V );
gensW:= GeneratorsOfLeftModule( W );
if IsEmpty( gensV ) then
if Zero( V ) in W then
inters:= V;
else
inters:= [];
fi;
elif IsEmpty( gensW ) then
if Zero( V ) in W then
inters:= W;
else
inters:= [];
fi;
else
# Compute a common coefficient space.
VW:= LeftModuleByGenerators( LeftActingDomain( V ),
Concatenation( gensV, gensW ) );
B:= Basis( VW );
# Construct the coefficient subspaces corresponding to 'V' and 'W'.
gensV:= List( gensV, x -> Coefficients( B, x ) );
gensW:= List( gensW, x -> Coefficients( B, x ) );
# Construct the intersection of row spaces, and carry back to VW.
inters:= List( SumIntersectionMat( gensV, gensW )[2],
x -> LinearCombination( B, x ) );
# Construct the intersection space, if possible with a parent.
if HasParent( V ) and HasParent( W )
and IsIdenticalObj( Parent( V ), Parent( W ) ) then
inters:= Substructure( Parent( V ), inters, "basis" );
elif IsEmpty( inters ) then
inters:= Substructure( V, inters, "basis" );
SetIsTrivial( inters, true );
else
inters:= Structure( LeftActingDomain( V ), inters, "basis" );
fi;
# Run implications by the subset relation.
UseSubsetRelation( V, inters );
UseSubsetRelation( W, inters );
fi;
# Return the result.
return inters;
else
TryNextMethod();
fi;
end;
end );
#############################################################################
##
#M Intersection2( <V>, <W> ) . . . . . . . . . . . . . for two vector spaces
##
InstallMethod( Intersection2,
"method for two vector spaces",
IsIdenticalObj,
[ IsVectorSpace, IsVectorSpace ],
Intersection2Spaces( AsLeftModule, SubspaceNC, VectorSpace ) );
#############################################################################
##
#M ClosureLeftModule( <V>, <a> ) . . . . . . . . . closure of a vector space
##
InstallMethod( ClosureLeftModule,
"method for a vector space with basis, and a vector",
IsCollsElms,
[ IsVectorSpace and HasBasis, IsVector ],
function( V, w )
local B; # basis of 'V'
# We can test membership easily.
B:= Basis( V );
#T why easily?
if Coefficients( B, w ) = fail then
# In the case of a vector space, we know a basis of the closure.
B:= Concatenation( BasisVectors( B ), [ w ] );
V:= LeftModuleByGenerators( LeftActingDomain( V ), B );
UseBasis( V, B );
fi;
return V;
end );
#############################################################################
##
## Methods for collections of subspaces of a vector space
##
#############################################################################
##
#R IsSubspacesVectorSpaceDefaultRep( <D> )
##
## is the representation of domains of subspaces of a vector space <V>,
## with the components 'structure' (with value <V>) and 'dimension'
## (with value either the dimension of the subspaces in the domain
## or the string '\"all\"', which means that the domain contains all
## subspaces of <V>).
##
DeclareRepresentation(
"IsSubspacesVectorSpaceDefaultRep",
IsComponentObjectRep,
[ "dimension", "structure" ] );
#T not IsAttributeStoringRep?
#############################################################################
##
#M PrintObj( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
InstallMethod( PrintObj,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
if IsInt( D!.dimension ) then
Print( "Subspaces( ", D!.structure, ", ", D!.dimension, " )" );
else
Print( "Subspaces( ", D!.structure, " )" );
fi;
end );
#############################################################################
##
#M Size( <D> ) . . . . . . . . . . . . . . . . . . . for a subspaces domain
##
## The number of $k$-dimensional subspaces in a $n$-dimensional space over
## the field with $q$ elements is
## $$
## a(n,k) = \prod_{i=0}^{k-1} \frac{q^n-q^i}{q^k-q^i} =
## \prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1}.
## $$
## We have the recursion
## $$
## a(n,k+1) = a(n,k) \frac{q^{n-i}-1}{q^{i+1}-1}.
## $$
##
## (The number of all subspaces is $\sum_{k=0}^n a(n,k)$.)
##
InstallMethod( Size,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local k,
n,
q,
size,
qn,
qd,
ank,
i;
if D!.dimension = "all" then
# all subspaces of the space
n:= Dimension( D!.structure );
q:= Size( LeftActingDomain( D!.structure ) );
size:= 1;
qn:= q^n;
qd:= q;
# $a(n,0)$
ank:= 1;
for k in [ 1 .. Int( (n-1)/2 ) ] do
# Compute $a(n,k)$.
ank:= ank * ( qn - 1 ) / ( qd - 1 );
qn:= qn / q;
qd:= qd * q;
size:= size + ank;
od;
size:= 2 * size;
if n mod 2 = 0 then
# Add the number of spaces of dimension $n/2$.
size:= size + ank * ( qn - 1 ) / ( qd - 1 );
fi;
else
# number of spaces of dimension 'k' only
n:= Dimension( D!.structure );
if D!.dimension < 0 or
n < D!.dimension then
return 0;
elif n / 2 < D!.dimension then
k:= n - D!.dimension;
else
k:= D!.dimension;
fi;
q:= Size( LeftActingDomain( D!.structure ) );
size:= 1;
qn:= q^n;
qd:= q;
for i in [ 1 .. k ] do
size:= size * ( qn - 1 ) / ( qd - 1 );
qn:= qn / q;
qd:= qd * q;
od;
fi;
# Return the result.
return size;
end );
#############################################################################
##
#M Enumerator( <D> ) . . . . . . . . . . . . . . . . for a subspaces domain
##
## Use the iterator to compute the elements list.
#T This is not allowed!
##
InstallMethod( Enumerator,
"method for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local iter, # iterator for 'D'
elms; # elements list, result
iter:= Iterator( D );
elms:= [];
while not IsDoneIterator( iter ) do
Add( elms, NextIterator( iter ) );
od;
return elms;
end );
#T necessary?
#############################################################################
##
#M Iterator( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
## uses the subspaces iterator for full row spaces and the mechanism of
## associated row spaces.
##
BindGlobal( "IsDoneIterator_Subspaces",
iter -> IsDoneIterator( iter!.associatedIterator ) );
BindGlobal( "NextIterator_Subspaces", function( iter )
local next;
next:= NextIterator( iter!.associatedIterator );
next:= List( GeneratorsOfLeftModule( next ),
x -> LinearCombination( iter!.basis, x ) );
return Subspace( iter!.structure, next, "basis" );
end );
BindGlobal( "ShallowCopy_Subspaces",
iter -> rec( structure := iter!.structure,
basis := iter!.basis,
associatedIterator := ShallowCopy(
iter!.associatedIterator ) ) );
InstallMethod( Iterator,
"for a subspaces domain",
[ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
function( D )
local V; # the vector space
V:= D!.structure;
return IteratorByFunctions( rec(
IsDoneIterator := IsDoneIterator_Subspaces,
NextIterator := NextIterator_Subspaces,
ShallowCopy := ShallowCopy_Subspaces,
structure := V,
basis := Basis( V ),
associatedIterator := Iterator(
Subspaces( FullRowSpace( LeftActingDomain( V ),
Dimension( V ) ),
D!.dimension ) ) ) );
end );
#############################################################################
##
#M Subspaces( <V>, <dim> )
##
InstallMethod( Subspaces,
"for a vector space, and an integer",
[ IsVectorSpace, IsInt ],
function( V, dim )
if IsFinite( V ) then
return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
IsSubspacesVectorSpace
and IsSubspacesVectorSpaceDefaultRep ),
rec(
structure := V,
dimension := dim
)
);
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M Subspaces( <V> )
##
InstallMethod( Subspaces,
"for a vector space",
[ IsVectorSpace ],
function( V )
if IsFinite( V ) then
return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
IsSubspacesVectorSpace
and IsSubspacesVectorSpaceDefaultRep ),
rec(
structure := V,
dimension := "all"
)
);
else
TryNextMethod();
fi;
end );
#############################################################################
##
#F IsSubspace( <V>, <U> ) . . . . . . . . . . . . . . . . . check <U> <= <V>
##
InstallGlobalFunction( IsSubspace, function( V, U )
return IsVectorSpace( U ) and IsSubset( V, U );
end );
#############################################################################
##
#M IsVectorSpaceHomomorphism( <map> )
##
InstallMethod( IsVectorSpaceHomomorphism,
[ IsGeneralMapping ],
function( map )
local S, R, F;
S:= Source( map );
if not IsVectorSpace( S ) then
return false;
fi;
R:= Range( map );
if not IsVectorSpace( R ) then
return false;
fi;
F:= LeftActingDomain( S );
return ( F = LeftActingDomain( R ) ) and IsLinearMapping( F, map );
end );
#############################################################################
##
#E