Init commit with many years of arduino sketches and projects. I dont know if the esp8266 includes much, but there are also libraries. I hope they dont have crazy automatic versioning through the Arduino IDE.

This commit is contained in:
2019-05-30 23:41:53 +02:00
parent 2d047634f2
commit 6c84b31f2c
1480 changed files with 198581 additions and 0 deletions

View File

@@ -0,0 +1,25 @@
#include <Servo.h>
Servo myservo;
int potpin = 0;
int potReading;
int photocellPin = 1;
int photocellReading;
void setup()
{
myservo.attach(9);
}
void loop()
{
potReading = analogRead(potpin);
potReading = map(potReading, 0, 1023, 0, 179);
myservo.write(potReading);
photocellReading = analogRead(photocellPin);
int thisPitch = map(photocellReading, 1, 1000, 120, 1500);
tone(8, thisPitch, 10);
delay(1);
}

View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,107 @@
#include <PLab_ZumoMotors.h>
#include <Pushbutton.h>
#include <QTRSensors.h>
#include <ZumoBuzzer.h>
#include <ZumoMotors.h>
#include <ZumoReflectanceSensorArray.h>
/*
* Demo line-following code for the Pololu Zumo Robot
*
* This code will follow a black line on a white background, using a
* PID-based algorithm. It works decently on courses with smooth, 6"
* radius curves and has been tested with Zumos using 30:1 HP and
* 75:1 HP motors. Modifications might be required for it to work
* well on different courses or with different motors.
*
* http://www.pololu.com/catalog/product/2506
* http://www.pololu.com
* http://forum.pololu.com
*/
ZumoReflectanceSensorArray reflectanceSensors;
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON);
int lastError = 0;
// This is the maximum speed the motors will be allowed to turn.
// (400 lets the motors go at top speed; decrease to impose a speed limit)
const int MAX_SPEED = 400;
// Set constants for PID control
const float KP = 0.5; // Proportional constant
const float KD = 6; // Derivative constant
const int SV = 2500; // Set-value for position (in the middle of sensors)
void setup()
{
reflectanceSensors.init();
button.waitForButton(); // wait to start calibration
// Turn on LED to indicate we are in calibration mode
pinMode(13, OUTPUT);
digitalWrite(13, HIGH);
// Wait 1 second and then begin automatic sensor calibration
// by rotating in place to sweep the sensors over the line
delay(1000);
int i;
for(i = 0; i < 80; i++)
{
if ((i > 10 && i <= 30) || (i > 50 && i <= 70))
motors.setSpeeds(-200, 200);
else
motors.setSpeeds(200, -200);
reflectanceSensors.calibrate();
// Since our counter runs to 80, the total delay will be
// 80*20 = 1600 ms.
delay(20);
}
motors.setSpeeds(0,0);
// Turn off LED to indicate we are through with calibration
digitalWrite(13, LOW);
// Wait for the user button to be pressed and released
button.waitForButton();
}
void loop()
{
unsigned int sensors[6];
int pv = reflectanceSensors.readLine(sensors);
// Our "error" is how far we are away from the center of the line, which
// corresponds to position 2500.
int error = pv - SV;
// do PD computation ( Integral is not used)
int speedDifference = KP*error + KD * (error - lastError);
lastError = error;
// Get individual motor speeds. The sign of speedDifference
// determines if the robot turns left or right.
int m1Speed = MAX_SPEED + speedDifference;
int m2Speed = MAX_SPEED - speedDifference;
// Here we constrain our motor speeds to be between 0 and MAX_SPEED.
// Generally speaking, one motor will always be turning at MAX_SPEED
// and the other will be at MAX_SPEED-|speedDifference| if that is positive,
// else it will be stationary. For some applications, you might want to
// allow the motor speed to go negative so that it can spin in reverse.
if (m1Speed < 0)
m1Speed = 0;
if (m2Speed < 0)
m2Speed = 0;
if (m1Speed > MAX_SPEED)
m1Speed = MAX_SPEED;
if (m2Speed > MAX_SPEED)
m2Speed = MAX_SPEED;
motors.setSpeeds(m1Speed, m2Speed);
}

View File

@@ -0,0 +1,53 @@
#include <PLab_ZumoMotors.h>
#include <Pushbutton.h>
#include <QTRSensors.h>
#include <ZumoBuzzer.h>
#include <ZumoMotors.h>
#include <ZumoReflectanceSensorArray.h>
#define driveSpeed 150
#define lightThreshold 800
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON);
unsigned int sensorValues[6];
ZumoReflectanceSensorArray reflectanceSensors;
void setup()
{
reflectanceSensors.init();
motors.setSpeeds(0,0);
button.waitForButton();
}
void findLine()
{
reflectanceSensors.read(sensorValues);
if (sensorValues[0] > lightThreshold)
{
turnLeft();
}
else if (sensorValues[5] > lightThreshold)
{
turnRight();
}
}
void turnLeft()
{
motors.setSpeeds(-driveSpeed, -300);
delay(400);
}
void turnRight()
{
motors.setSpeeds(-300, -driveSpeed);
delay(400);
}
void loop()
{
findLine();
motors.setSpeeds(driveSpeed, driveSpeed);
}

View File

@@ -0,0 +1,57 @@
#include <Servo.h>
#include <NewPing.h>
#define Trigger_Pin 12
#define Echo_Pin 11
#define Max_Distance 200
// Green car - 10
// Yellow car - 9
// Red car - 8
// Green person - 7
// Red person - 6
// ECHO 11 & 12
NewPing sonar(Trigger_Pin, Echo_Pin, Max_Distance);
Servo gateServo;
int servoPos = 0;
int lightPinArray[] = {
10, 9, 9, 8, 7, 6, 6, 7, 9, 8, 9};
boolean lightStateArray[] = {
LOW, HIGH, LOW, HIGH, LOW, HIGH, LOW, HIGH, HIGH, LOW, LOW};
int lightDelayArray[] = {
1000, 0, 500, 0, 500, 0, 2000, 0, 500, 500, 0};
void setup()
{
for (int i = 0; i < 5; i++)
{
pinMode(i + 6, OUTPUT);
}
gateServo.attach(4);
}
void personDetected()
{
for(int i = 0; i < 12; i++)
{
delay(lightDelayArray[i]);
digitalWrite(lightPinArray[i], lightStateArray[i]);
}
void loop()
{
unsigned int uS = sonar.ping();
if ((uS /US_ROUNDTRIP_CM) < 5 && uS /US_ROUNDTRIP_CM > 1)
{
personDetected();
}
else
{
digitalWrite(7, HIGH);
digitalWrite(10, HIGH);
}
}

Binary file not shown.

View File

@@ -0,0 +1,89 @@
#include <PLab_ZumoMotors.h>
#include <Pushbutton.h>
#include <QTRSensors.h>
#include <ZumoBuzzer.h>
#include <ZumoMotors.h>
#include <ZumoReflectanceSensorArray.h>
ZumoReflectanceSensorArray reflectanceSensors;
unsigned int sensor_values[6];
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON);
int lastError = 0;
const int MAX_SPEED = 800;
// Set constants for PID control
const float KP = 0.5; // Proportional constant
const float KD = 6; // Derivative constant
const int SV = 2500; // Set-value for position (in the middle of sensors)
unsigned long Timer; //"ALWAYS use unsigned long for timers, not int"
void setup()
{
Serial.begin(9600);
reflectanceSensors.init();
pinMode(13, OUTPUT);
digitalWrite(13, HIGH);
button.waitForButton();
for(int i = 0; i < 80; i++)
{
if ((i > 10 && i <= 30) || (i > 50 && i <= 70))
motors.setSpeeds(-200, 200);
else
motors.setSpeeds(200, -200);
reflectanceSensors.calibrate();
// Since our counter runs to 80, the total delay will be
// 80*20 = 1600 ms.
delay(20);
}
motors.setSpeeds(0, 0);
button.waitForButton();
digitalWrite(13, LOW);
}
void loop()
{
reflectanceSensors.read(sensor_values);
if (sensor_values[5] < 1800)
{
motors.setSpeeds(-100, -100);
delay(1000);
motors.setSpeeds(-100, 100);
delay(1000);
}
else if (sensor_values[0] < 1800)
{
motors.setSpeeds(-100, -100);
delay(1000);
motors.setSpeeds(100, -100);
delay(1000);
}
else
{
motors.setSpeeds(100, 100);
}
int pv = reflectanceSensors.readLine(sensor_values);
// Our "error" is how far we are away from the center of the line, which
// corresponds to position 2500.
int error = pv - SV;
// do PD computation ( Integral is not used)
int speedDifference = KP*error + KD * (error - lastError);
//Serial.println(error);
lastError = error;
// Get individual motor speeds. The sign of speedDifference
// determines if the robot turns left or right.
int m1Speed = MAX_SPEED + speedDifference;
int m2Speed = MAX_SPEED - speedDifference;
motors.setSpeeds(m1Speed, m2Speed);
}

View File

@@ -0,0 +1,54 @@
#include <PLab_ZumoMotors.h>
#include <Pushbutton.h>
#include <QTRSensors.h>
#include <ZumoBuzzer.h>
#include <ZumoMotors.h>
#include <ZumoReflectanceSensorArray.h>
#define maxSpeed 400
#define reverseSpeed 400
#define lightThreshold 1800
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON);
unsigned int sensorValues[6];
ZumoReflectanceSensorArray reflectaneceSensors;
void setup()
{
reflectaneceSensors.init();
motors.setSpeeds(0,0);
button.waitForButton();
}
void findLine()
{
reflectaneceSensors.read(sensorValues);
if (sensorValues[0] > lightThreshold)
{
turnLeft(1000);
}
else if (sensorValues[5] > lightThreshold)
{
turnRight(1000);
}
}
void turnLeft(int delayTime)
{
motors.setSpeeds(0, 200);
delay(delayTime);
}
void turnRight(int delayTime)
{
motors.setSpeeds(200, 0);
delay(delayTime);
}
void loop()
{
findLine();
motors.setSpeeds(200, 200);
}

View File

@@ -0,0 +1,81 @@
/*
Drive forward and turn left or right when border is detected
- Only reflectionsensor 0 and 5 are used.
*/
#include <ZumoMotors.h>
#include <Pushbutton.h>
#include <QTRSensors.h>
#include <ZumoReflectanceSensorArray.h>
#include <NewPing.h>
#define LED 13
// this might need to be tuned for different lighting conditions, surfaces, etc.
#define lightThreshold 1800 //
#define reverseSpeed 200
#define turnSpeed 200
#define forwardSpeed 100
#define revDuration 200
#define turnDuration 500
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON); // pushbutton on pin 12
#define NUM_SENSORS 6
unsigned int sensor_values[NUM_SENSORS];
ZumoReflectanceSensorArray sensors;
const int echoPin1 = 2;
const int echoPin2 = 4;
const int triggerPin1 = 3;
const int triggerPin2 = 5;
const int maxDistance = 40;
NewPing sonar1(triggerPin1, echoPin1, maxDistance);
NewPing sonar2(triggerPin2, echoPin2, maxDistance);
void setup()
{
Serial.begin(9600);
sensors.init();
button.waitForButton();
}
void turnLeft()
{
motors.setSpeeds(-reverseSpeed, -reverseSpeed);
delay(revDuration);
motors.setSpeeds(turnSpeed, -turnSpeed);
delay(turnDuration);
motors.setSpeeds(forwardSpeed, forwardSpeed);
}
void turnRight()
{
motors.setSpeeds(-reverseSpeed, -reverseSpeed);
delay(revDuration);
motors.setSpeeds(-turnSpeed, turnSpeed);
delay(turnDuration);
motors.setSpeeds(forwardSpeed, forwardSpeed);
}
void loop()
{
sensors.read(sensor_values);
if (sensor_values[0] < lightThresHold || sensor_values[5] < lightThreshold)
{
if (sensor_values[0] < lightThreshold)
{
turnLeft();
}
else if (sensor_values[5] < lightThreshold)
{
turnRight();
}
}
unsigned int time = sonar1.ping();
if (
// If haven't done anything, go forward
motors.setSpeeds(forwardSpeed, forwardSpeed);
}

View File

@@ -0,0 +1,128 @@
/*
Drive forward and turn left or right when border is detected
- Only reflectionsensor 0 and 5 are used.
*/
#include <ZumoMotors.h>
#include <Pushbutton.h>
#include <QTRSensors.h>
#include <ZumoReflectanceSensorArray.h>
#include <NewPing.h>
#define LED 13
// this might need to be tuned for different lighting conditions, surfaces, etc.
#define lightThreshold 1800 //
#define reverseSpeed 400
#define turnSpeed 400
#define forwardSpeed 400
#define revDuration 300
#define turnDuration 200
#define triggerPin 3
#define echoPin 2
#define maxDistance 200
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON); // pushbutton on pin 12
#define NUM_SENSORS 6
unsigned int sensor_values[NUM_SENSORS];
ZumoReflectanceSensorArray sensors;
NewPing sonar(triggerPin, echoPin, maxDistance);
unsigned int pingSpeed = 100;
unsigned long pingTimer;
void setup()
{
Serial.begin(115200);
sensors.init();
pingTimer = millis();
//button.waitForButton();
}
boolean findLine()
{
sensors.read(sensor_values);
if (sensor_values[0] < lightThreshold || sensor_values[5] < lightThreshold)
{
if (sensor_values[0] < lightThreshold)
{
turnLeft();
return true;
}
else if (sensor_values[5] < lightThreshold)
{
turnRight();
return true;
}
}
return false;
}
void turnLeft()
{
motors.setSpeeds(-reverseSpeed, -reverseSpeed);
delay(revDuration);
motors.setSpeeds(turnSpeed, -turnSpeed);
delay(turnDuration);
}
void turnRight()
{
motors.setSpeeds(-reverseSpeed, -reverseSpeed);
delay(revDuration);
motors.setSpeeds(-turnSpeed, turnSpeed);
delay(turnDuration);
}
/*
void search()
{
time = sonar.ping();
distance = sonar.convert_cm(time);
if (distance < 40)
motors.setSpeeds(310, 400);
else
{
motors.setSpeeds(400, 400);
delay(20);
time = sonar.ping();
distance = sonar.convert_cm(time);
if (distance < 40)
motors.setSpeeds(310, 400);
}
}*/
void echoCheck()
{
if (sonar.check_timer())
{
if (sonar.ping_result / US_ROUNDTRIP_CM < 20)
{
Serial.println(sonar.ping_result / US_ROUNDTRIP_CM);
motors.setSpeeds(310, 400);
}
else
{
Serial.println("Nothing here!");
motors.setSpeeds(400, 400);
delay(20);
}
}
}
void scan()
{
// Init at start, find the target.
}
void loop()
{
findLine();
motors.setSpeeds(310, 400);
if (millis() >= pingTimer)
{
pingTimer += pingSpeed;
sonar.ping_timer(echoCheck);
}
}

View File

@@ -0,0 +1,221 @@
// ---------------------------------------------------------------------------
// toneAC Library - v1.2 - 01/27/2013
//
// AUTHOR/LICENSE:
// Created by Tim Eckel - teckel@leethost.com
// Copyright 2013 License: GNU GPL v3 http://www.gnu.org/licenses/gpl-3.0.html
//
// LINKS:
// Project home: http://code.google.com/p/arduino-tone-ac/
// Blog: http://arduino.cc/forum/index.php/topic,142097.msg1066968.html
//
// DISCLAIMER:
// This software is furnished "as is", without technical support, and with no
// warranty, express or implied, as to its usefulness for any purpose.
//
// PURPOSE:
// Replacement to the standard tone library with the advantage of nearly twice
// the volume, higher frequencies (even if running at a lower clock speed),
// higher quality (less clicking), nearly 1.5k smaller compiled code and less
// stress on the speaker. Disadvantages are that it must use certain pins and
// it uses two pins instead of one. But, if you're flexible with your pin
// choices, this is a great upgrade. It also uses timer 1 instead of timer 2,
// which may free up a conflict you have with the tone library. It exclusively
// uses port registers for the fastest and smallest code possible.
//
// USAGE:
// Connection is very similar to a piezo or standard speaker. Except, instead
// of connecting one speaker wire to ground you connect both speaker wires to
// Arduino pins. The pins you connect to are specific, as toneAC lets the
// ATmega microcontroller do all the pin timing and switching. This is
// important due to the high switching speed possible with toneAC and to make
// sure the pins are alyways perfectly out of phase with each other
// (push/pull). See the below CONNECTION section for which pins to use for
// different Arduinos. Just as usual when connecting a speaker, make sure you
// add an inline 100 ohm resistor between one of the pins and the speaker wire.
//
// CONNECTION:
// Pins 9 & 10 - ATmega328, ATmega128, ATmega640, ATmega8, Uno, Leonardo, etc.
// Pins 11 & 12 - ATmega2560/2561, ATmega1280/1281, Mega
// Pins 12 & 13 - ATmega1284P, ATmega644
// Pins 14 & 15 - Teensy 2.0
// Pins 25 & 26 - Teensy++ 2.0
//
// SYNTAX:
// toneAC( frequency [, volume [, length [, background ]]] ) - Play a note.
// Parameters:
// * frequency - Play the specified frequency indefinitely, turn off with toneAC().
// * volume - [optional] Set a volume level. (default: 10, range: 0 to 10 [0 = off])
// * length - [optional] Set the length to play in milliseconds. (default: 0 [forever], range: 0 to 2^32-1)
// * background - [optional] Play note in background or pause till finished? (default: false, values: true/false)
// toneAC() - Stop playing.
// noToneAC() - Same as toneAC().
//
// HISTORY:
// 01/27/2013 v1.2 - Fixed a counter error which went "over the top" and caused
// periods of silence (thanks Krodal). For advanced users needing tight code,
// the TONEAC_TINY switch in toneAC.h activates a version of toneAC() that
// saves 110 bytes. With TONEAC_TINY, the syntax is toneAC(frequency, length)
// while playing the note at full volume forever in the background. Added
// support for the ATmega 640, 644, 1281, 1284P and 2561 microcontrollers.
//
// 01/16/2013 v1.1 - Option to play notes in background, returning control back
// to your sketch for processing while note plays (similar to the way the tone
// library works). Volume is now linear and in the range from 0-10. Now uses
// prescaler 256 instead of 64 for frequencies below 122 Hz so it can go down
// to 1 Hz no matter what speed the CPU is clocked at (helpful if using toneAC
// to control a two-pin dual LED).
//
// 01/11/2013 v1.0 - Initial release.
//
// ---------------------------------------------------------------------------
#ifndef toneAC_h
#define toneAC_h
#if defined(ARDUINO) && ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
//#define TONEAC_TINY // Uncomment to use alternate function toneAC(frequency, length) that saves 110 bytes.
#if defined (__AVR_ATmega32U4__) || defined(__AVR_ATmega640__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)
#define PWMT1AMASK DDB5
#define PWMT1BMASK DDB6
#define PWMT1DREG DDRB
#define PWMT1PORT PORTB
#elif defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__)
#define PWMT1AMASK DDD4
#define PWMT1BMASK DDD5
#define PWMT1DREG DDRD
#define PWMT1PORT PORTD
#else
#define PWMT1AMASK DDB1
#define PWMT1BMASK DDB2
#define PWMT1DREG DDRB
#define PWMT1PORT PORTB
#endif
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__)
#define TIMSK1 TIMSK
#endif
#ifndef TONEAC_TINY
void toneAC(unsigned long frequency = 0, uint8_t volume = 10, unsigned long length = 0, uint8_t background = false);
#else
void toneAC(unsigned long frequency = 0, unsigned long length = 0);
#endif
void noToneAC();
#endif

View File

@@ -0,0 +1,35 @@
// ---------------------------------------------------------------------------
// Connect your piezo buzzer (without internal oscillator) or speaker to these pins:
// Pins 9 & 10 - ATmega328, ATmega128, ATmega640, ATmega8, Uno, Leonardo, etc.
// Pins 11 & 12 - ATmega2560/2561, ATmega1280/1281, Mega
// Pins 12 & 13 - ATmega1284P, ATmega644
// Pins 14 & 15 - Teensy 2.0
// Pins 25 & 26 - Teensy++ 2.0
// Be sure to include an inline 100 ohm resistor on one pin as you normally do when connecting a piezo or speaker.
// ---------------------------------------------------------------------------
#include "toneAC.h"
// Melody liberated from the toneMelody Arduino example sketch by Tom Igoe.
int melody[] = { 262, 196, 196, 220, 196, 0, 247, 262 };
int noteDurations[] = { 4, 8, 8, 4, 4, 4, 4, 4 };
void setup() {} // Nothing to setup, just start playing!
void loop() {
for (unsigned long freq = 125; freq <= 15000; freq += 10) {
toneAC(freq); // Play the frequency (125 Hz to 15 kHz sweep in 10 Hz steps).
delay(1); // Wait 1 ms so you can hear it.
}
toneAC(); // Turn off toneAC, can also use noToneAC().
delay(1000); // Wait a second.
for (int thisNote = 0; thisNote < 8; thisNote++) {
int noteDuration = 1000/noteDurations[thisNote];
toneAC(melody[thisNote], 10, noteDuration, true); // Play thisNote at full volume for noteDuration in the background.
delay(noteDuration * 4 / 3); // Wait while the tone plays in the background, plus another 33% delay between notes.
}
while(1); // Stop (so it doesn't repeat forever driving you crazy--you're welcome).
}