mirror of
https://github.com/KevinMidboe/Arduino.git
synced 2026-01-30 04:46:36 +00:00
Init commit with many years of arduino sketches and projects. I dont know if the esp8266 includes much, but there are also libraries. I hope they dont have crazy automatic versioning through the Arduino IDE.
This commit is contained in:
@@ -0,0 +1,37 @@
|
||||
/* @file CustomKeypad.pde
|
||||
|| @version 1.0
|
||||
|| @author Alexander Brevig
|
||||
|| @contact alexanderbrevig@gmail.com
|
||||
||
|
||||
|| @description
|
||||
|| | Demonstrates changing the keypad size and key values.
|
||||
|| #
|
||||
*/
|
||||
#include <Keypad.h>
|
||||
|
||||
const byte ROWS = 4; //four rows
|
||||
const byte COLS = 4; //four columns
|
||||
//define the cymbols on the buttons of the keypads
|
||||
char hexaKeys[ROWS][COLS] = {
|
||||
{'0','1','2','3'},
|
||||
{'4','5','6','7'},
|
||||
{'8','9','A','B'},
|
||||
{'C','D','E','F'}
|
||||
};
|
||||
byte rowPins[ROWS] = {3, 2, 1, 0}; //connect to the row pinouts of the keypad
|
||||
byte colPins[COLS] = {7, 6, 5, 4}; //connect to the column pinouts of the keypad
|
||||
|
||||
//initialize an instance of class NewKeypad
|
||||
Keypad customKeypad = Keypad( makeKeymap(hexaKeys), rowPins, colPins, ROWS, COLS);
|
||||
|
||||
void setup(){
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop(){
|
||||
char customKey = customKeypad.getKey();
|
||||
|
||||
if (customKey){
|
||||
Serial.println(customKey);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,213 @@
|
||||
/* @file DynamicKeypad.pde
|
||||
|| @version 1.2
|
||||
|| @author Mark Stanley
|
||||
|| @contact mstanley@technologist.com
|
||||
||
|
||||
|| 07/11/12 - Re-modified (from DynamicKeypadJoe2) to use direct-connect kpds
|
||||
|| 02/28/12 - Modified to use I2C i/o G. D. (Joe) Young
|
||||
||
|
||||
||
|
||||
|| @dificulty: Intermediate
|
||||
||
|
||||
|| @description
|
||||
|| | This is a demonstration of keypadEvents. It's used to switch between keymaps
|
||||
|| | while using only one keypad. The main concepts being demonstrated are:
|
||||
|| |
|
||||
|| | Using the keypad events, PRESSED, HOLD and RELEASED to simplify coding.
|
||||
|| | How to use setHoldTime() and why.
|
||||
|| | Making more than one thing happen with the same key.
|
||||
|| | Assigning and changing keymaps on the fly.
|
||||
|| |
|
||||
|| | Another useful feature is also included with this demonstration although
|
||||
|| | it's not really one of the concepts that I wanted to show you. If you look
|
||||
|| | at the code in the PRESSED event you will see that the first section of that
|
||||
|| | code is used to scroll through three different letters on each key. For
|
||||
|| | example, pressing the '2' key will step through the letters 'd', 'e' and 'f'.
|
||||
|| |
|
||||
|| |
|
||||
|| | Using the keypad events, PRESSED, HOLD and RELEASED to simplify coding
|
||||
|| | Very simply, the PRESSED event occurs imediately upon detecting a pressed
|
||||
|| | key and will not happen again until after a RELEASED event. When the HOLD
|
||||
|| | event fires it always falls between PRESSED and RELEASED. However, it will
|
||||
|| | only occur if a key has been pressed for longer than the setHoldTime() interval.
|
||||
|| |
|
||||
|| | How to use setHoldTime() and why
|
||||
|| | Take a look at keypad.setHoldTime(500) in the code. It is used to set the
|
||||
|| | time delay between a PRESSED event and the start of a HOLD event. The value
|
||||
|| | 500 is in milliseconds (mS) and is equivalent to half a second. After pressing
|
||||
|| | a key for 500mS the HOLD event will fire and any code contained therein will be
|
||||
|| | executed. This event will stay active for as long as you hold the key except
|
||||
|| | in the case of bug #1 listed above.
|
||||
|| |
|
||||
|| | Making more than one thing happen with the same key.
|
||||
|| | If you look under the PRESSED event (case PRESSED:) you will see that the '#'
|
||||
|| | is used to print a new line, Serial.println(). But take a look at the first
|
||||
|| | half of the HOLD event and you will see the same key being used to switch back
|
||||
|| | and forth between the letter and number keymaps that were created with alphaKeys[4][5]
|
||||
|| | and numberKeys[4][5] respectively.
|
||||
|| |
|
||||
|| | Assigning and changing keymaps on the fly
|
||||
|| | You will see that the '#' key has been designated to perform two different functions
|
||||
|| | depending on how long you hold it down. If you press the '#' key for less than the
|
||||
|| | setHoldTime() then it will print a new line. However, if you hold if for longer
|
||||
|| | than that it will switch back and forth between numbers and letters. You can see the
|
||||
|| | keymap changes in the HOLD event.
|
||||
|| |
|
||||
|| |
|
||||
|| | In addition...
|
||||
|| | You might notice a couple of things that you won't find in the Arduino language
|
||||
|| | reference. The first would be #include <ctype.h>. This is a standard library from
|
||||
|| | the C programming language and though I don't normally demonstrate these types of
|
||||
|| | things from outside the Arduino language reference I felt that its use here was
|
||||
|| | justified by the simplicity that it brings to this sketch.
|
||||
|| | That simplicity is provided by the two calls to isalpha(key) and isdigit(key).
|
||||
|| | The first one is used to decide if the key that was pressed is any letter from a-z
|
||||
|| | or A-Z and the second one decides if the key is any number from 0-9. The return
|
||||
|| | value from these two functions is either a zero or some positive number greater
|
||||
|| | than zero. This makes it very simple to test a key and see if it is a number or
|
||||
|| | a letter. So when you see the following:
|
||||
|| |
|
||||
|| | if (isalpha(key)) // this tests to see if your key was a letter
|
||||
|| |
|
||||
|| | And the following may be more familiar to some but it is equivalent:
|
||||
|| |
|
||||
|| | if (isalpha(key) != 0) // this tests to see if your key was a letter
|
||||
|| |
|
||||
|| | And Finally...
|
||||
|| | To better understand how the event handler affects your code you will need to remember
|
||||
|| | that it gets called only when you press, hold or release a key. However, once a key
|
||||
|| | is pressed or held then the event handler gets called at the full speed of the loop().
|
||||
|| |
|
||||
|| #
|
||||
*/
|
||||
#include <Keypad.h>
|
||||
#include <ctype.h>
|
||||
|
||||
const byte ROWS = 4; //four rows
|
||||
const byte COLS = 3; //three columns
|
||||
// Define the keymaps. The blank spot (lower left) is the space character.
|
||||
char alphaKeys[ROWS][COLS] = {
|
||||
{ 'a','d','g' },
|
||||
{ 'j','m','p' },
|
||||
{ 's','v','y' },
|
||||
{ ' ','.','#' }
|
||||
};
|
||||
|
||||
char numberKeys[ROWS][COLS] = {
|
||||
{ '1','2','3' },
|
||||
{ '4','5','6' },
|
||||
{ '7','8','9' },
|
||||
{ ' ','0','#' }
|
||||
};
|
||||
|
||||
boolean alpha = false; // Start with the numeric keypad.
|
||||
|
||||
byte rowPins[ROWS] = {5, 4, 3, 2}; //connect to the row pinouts of the keypad
|
||||
byte colPins[COLS] = {8, 7, 6}; //connect to the column pinouts of the keypad
|
||||
|
||||
// Create two new keypads, one is a number pad and the other is a letter pad.
|
||||
Keypad numpad( makeKeymap(numberKeys), rowPins, colPins, sizeof(rowPins), sizeof(colPins) );
|
||||
Keypad ltrpad( makeKeymap(alphaKeys), rowPins, colPins, sizeof(rowPins), sizeof(colPins) );
|
||||
|
||||
|
||||
unsigned long startTime;
|
||||
const byte ledPin = 13; // Use the LED on pin 13.
|
||||
|
||||
void setup() {
|
||||
Serial.begin(9600);
|
||||
pinMode(ledPin, OUTPUT);
|
||||
digitalWrite(ledPin, LOW); // Turns the LED on.
|
||||
ltrpad.begin( makeKeymap(alphaKeys) );
|
||||
numpad.begin( makeKeymap(numberKeys) );
|
||||
ltrpad.addEventListener(keypadEvent_ltr); // Add an event listener.
|
||||
ltrpad.setHoldTime(500); // Default is 1000mS
|
||||
numpad.addEventListener(keypadEvent_num); // Add an event listener.
|
||||
numpad.setHoldTime(500); // Default is 1000mS
|
||||
}
|
||||
|
||||
char key;
|
||||
|
||||
void loop() {
|
||||
|
||||
if( alpha )
|
||||
key = ltrpad.getKey( );
|
||||
else
|
||||
key = numpad.getKey( );
|
||||
|
||||
if (alpha && millis()-startTime>100) { // Flash the LED if we are using the letter keymap.
|
||||
digitalWrite(ledPin,!digitalRead(ledPin));
|
||||
startTime = millis();
|
||||
}
|
||||
}
|
||||
|
||||
static char virtKey = NO_KEY; // Stores the last virtual key press. (Alpha keys only)
|
||||
static char physKey = NO_KEY; // Stores the last physical key press. (Alpha keys only)
|
||||
static char buildStr[12];
|
||||
static byte buildCount;
|
||||
static byte pressCount;
|
||||
|
||||
static byte kpadState;
|
||||
|
||||
// Take care of some special events.
|
||||
|
||||
void keypadEvent_ltr(KeypadEvent key) {
|
||||
// in here when in alpha mode.
|
||||
kpadState = ltrpad.getState( );
|
||||
swOnState( key );
|
||||
} // end ltrs keypad events
|
||||
|
||||
void keypadEvent_num( KeypadEvent key ) {
|
||||
// in here when using number keypad
|
||||
kpadState = numpad.getState( );
|
||||
swOnState( key );
|
||||
} // end numbers keypad events
|
||||
|
||||
void swOnState( char key ) {
|
||||
switch( kpadState ) {
|
||||
case PRESSED:
|
||||
if (isalpha(key)) { // This is a letter key so we're using the letter keymap.
|
||||
if (physKey != key) { // New key so start with the first of 3 characters.
|
||||
pressCount = 0;
|
||||
virtKey = key;
|
||||
physKey = key;
|
||||
}
|
||||
else { // Pressed the same key again...
|
||||
virtKey++; // so select the next character on that key.
|
||||
pressCount++; // Tracks how many times we press the same key.
|
||||
}
|
||||
if (pressCount > 2) { // Last character reached so cycle back to start.
|
||||
pressCount = 0;
|
||||
virtKey = key;
|
||||
}
|
||||
Serial.print(virtKey); // Used for testing.
|
||||
}
|
||||
if (isdigit(key) || key == ' ' || key == '.')
|
||||
Serial.print(key);
|
||||
if (key == '#')
|
||||
Serial.println();
|
||||
break;
|
||||
|
||||
case HOLD:
|
||||
if (key == '#') { // Toggle between keymaps.
|
||||
if (alpha == true) { // We are currently using a keymap with letters
|
||||
alpha = false; // Now we want a keymap with numbers.
|
||||
digitalWrite(ledPin, LOW);
|
||||
}
|
||||
else { // We are currently using a keymap with numbers
|
||||
alpha = true; // Now we want a keymap with letters.
|
||||
}
|
||||
}
|
||||
else { // Some key other than '#' was pressed.
|
||||
buildStr[buildCount++] = (isalpha(key)) ? virtKey : key;
|
||||
buildStr[buildCount] = '\0';
|
||||
Serial.println();
|
||||
Serial.println(buildStr);
|
||||
}
|
||||
break;
|
||||
|
||||
case RELEASED:
|
||||
if (buildCount >= sizeof(buildStr)) buildCount = 0; // Our string is full. Start fresh.
|
||||
break;
|
||||
} // end switch-case
|
||||
}// end switch on state function
|
||||
|
||||
@@ -0,0 +1,73 @@
|
||||
/* @file EventSerialKeypad.pde
|
||||
|| @version 1.0
|
||||
|| @author Alexander Brevig
|
||||
|| @contact alexanderbrevig@gmail.com
|
||||
||
|
||||
|| @description
|
||||
|| | Demonstrates using the KeypadEvent.
|
||||
|| #
|
||||
*/
|
||||
#include <Keypad.h>
|
||||
|
||||
const byte ROWS = 4; //four rows
|
||||
const byte COLS = 3; //three columns
|
||||
char keys[ROWS][COLS] = {
|
||||
{'1','2','3'},
|
||||
{'4','5','6'},
|
||||
{'7','8','9'},
|
||||
{'*','0','#'}
|
||||
};
|
||||
|
||||
byte rowPins[ROWS] = {5, 4, 3, 2}; //connect to the row pinouts of the keypad
|
||||
byte colPins[COLS] = {8, 7, 6}; //connect to the column pinouts of the keypad
|
||||
|
||||
Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
|
||||
byte ledPin = 13;
|
||||
|
||||
boolean blink = false;
|
||||
boolean ledPin_state;
|
||||
|
||||
void setup(){
|
||||
Serial.begin(9600);
|
||||
pinMode(ledPin, OUTPUT); // Sets the digital pin as output.
|
||||
digitalWrite(ledPin, HIGH); // Turn the LED on.
|
||||
ledPin_state = digitalRead(ledPin); // Store initial LED state. HIGH when LED is on.
|
||||
keypad.addEventListener(keypadEvent); // Add an event listener for this keypad
|
||||
}
|
||||
|
||||
void loop(){
|
||||
char key = keypad.getKey();
|
||||
|
||||
if (key) {
|
||||
Serial.println(key);
|
||||
}
|
||||
if (blink){
|
||||
digitalWrite(ledPin,!digitalRead(ledPin)); // Change the ledPin from Hi2Lo or Lo2Hi.
|
||||
delay(100);
|
||||
}
|
||||
}
|
||||
|
||||
// Taking care of some special events.
|
||||
void keypadEvent(KeypadEvent key){
|
||||
switch (keypad.getState()){
|
||||
case PRESSED:
|
||||
if (key == '#') {
|
||||
digitalWrite(ledPin,!digitalRead(ledPin));
|
||||
ledPin_state = digitalRead(ledPin); // Remember LED state, lit or unlit.
|
||||
}
|
||||
break;
|
||||
|
||||
case RELEASED:
|
||||
if (key == '*') {
|
||||
digitalWrite(ledPin,ledPin_state); // Restore LED state from before it started blinking.
|
||||
blink = false;
|
||||
}
|
||||
break;
|
||||
|
||||
case HOLD:
|
||||
if (key == '*') {
|
||||
blink = true; // Blink the LED when holding the * key.
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,35 @@
|
||||
/* @file HelloKeypad.pde
|
||||
|| @version 1.0
|
||||
|| @author Alexander Brevig
|
||||
|| @contact alexanderbrevig@gmail.com
|
||||
||
|
||||
|| @description
|
||||
|| | Demonstrates the simplest use of the matrix Keypad library.
|
||||
|| #
|
||||
*/
|
||||
#include <Keypad.h>
|
||||
|
||||
const byte ROWS = 4; //four rows
|
||||
const byte COLS = 3; //three columns
|
||||
char keys[ROWS][COLS] = {
|
||||
{'1','2','3'},
|
||||
{'4','5','6'},
|
||||
{'7','8','9'},
|
||||
{'*','0','#'}
|
||||
};
|
||||
byte rowPins[ROWS] = {5, 4, 3, 2}; //connect to the row pinouts of the keypad
|
||||
byte colPins[COLS] = {8, 7, 6}; //connect to the column pinouts of the keypad
|
||||
|
||||
Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
|
||||
|
||||
void setup(){
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop(){
|
||||
char key = keypad.getKey();
|
||||
|
||||
if (key){
|
||||
Serial.println(key);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,68 @@
|
||||
#include <Keypad.h>
|
||||
|
||||
|
||||
const byte ROWS = 2; // use 4X4 keypad for both instances
|
||||
const byte COLS = 2;
|
||||
char keys[ROWS][COLS] = {
|
||||
{'1','2'},
|
||||
{'3','4'}
|
||||
};
|
||||
byte rowPins[ROWS] = {5, 4}; //connect to the row pinouts of the keypad
|
||||
byte colPins[COLS] = {7, 6}; //connect to the column pinouts of the keypad
|
||||
Keypad kpd( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
|
||||
|
||||
|
||||
const byte ROWSR = 2;
|
||||
const byte COLSR = 2;
|
||||
char keysR[ROWSR][COLSR] = {
|
||||
{'a','b'},
|
||||
{'c','d'}
|
||||
};
|
||||
byte rowPinsR[ROWSR] = {3, 2}; //connect to the row pinouts of the keypad
|
||||
byte colPinsR[COLSR] = {7, 6}; //connect to the column pinouts of the keypad
|
||||
Keypad kpdR( makeKeymap(keysR), rowPinsR, colPinsR, ROWSR, COLSR );
|
||||
|
||||
|
||||
const byte ROWSUR = 4;
|
||||
const byte COLSUR = 1;
|
||||
char keysUR[ROWSUR][COLSUR] = {
|
||||
{'M'},
|
||||
{'A'},
|
||||
{'R'},
|
||||
{'K'}
|
||||
};
|
||||
// Digitran keypad, bit numbers of PCF8574 i/o port
|
||||
byte rowPinsUR[ROWSUR] = {5, 4, 3, 2}; //connect to the row pinouts of the keypad
|
||||
byte colPinsUR[COLSUR] = {8}; //connect to the column pinouts of the keypad
|
||||
|
||||
Keypad kpdUR( makeKeymap(keysUR), rowPinsUR, colPinsUR, ROWSUR, COLSUR );
|
||||
|
||||
|
||||
void setup(){
|
||||
// Wire.begin( );
|
||||
kpdUR.begin( makeKeymap(keysUR) );
|
||||
kpdR.begin( makeKeymap(keysR) );
|
||||
kpd.begin( makeKeymap(keys) );
|
||||
Serial.begin(9600);
|
||||
Serial.println( "start" );
|
||||
}
|
||||
|
||||
//byte alternate = false;
|
||||
char key, keyR, keyUR;
|
||||
void loop(){
|
||||
|
||||
// alternate = !alternate;
|
||||
key = kpd.getKey( );
|
||||
keyUR = kpdUR.getKey( );
|
||||
keyR = kpdR.getKey( );
|
||||
|
||||
if (key){
|
||||
Serial.println(key);
|
||||
}
|
||||
if( keyR ) {
|
||||
Serial.println( keyR );
|
||||
}
|
||||
if( keyUR ) {
|
||||
Serial.println( keyUR );
|
||||
}
|
||||
}
|
||||
78
Projects/libraries/Installed_libs/Keypad/examples/MultiKey/MultiKey.ino
Executable file
78
Projects/libraries/Installed_libs/Keypad/examples/MultiKey/MultiKey.ino
Executable file
@@ -0,0 +1,78 @@
|
||||
/* @file MultiKey.ino
|
||||
|| @version 1.0
|
||||
|| @author Mark Stanley
|
||||
|| @contact mstanley@technologist.com
|
||||
||
|
||||
|| @description
|
||||
|| | The latest version, 3.0, of the keypad library supports up to 10
|
||||
|| | active keys all being pressed at the same time. This sketch is an
|
||||
|| | example of how you can get multiple key presses from a keypad or
|
||||
|| | keyboard.
|
||||
|| #
|
||||
*/
|
||||
|
||||
#include <Keypad.h>
|
||||
|
||||
const byte ROWS = 4; //four rows
|
||||
const byte COLS = 3; //three columns
|
||||
char keys[ROWS][COLS] = {
|
||||
{'1','2','3'},
|
||||
{'4','5','6'},
|
||||
{'7','8','9'},
|
||||
{'*','0','#'}
|
||||
};
|
||||
byte rowPins[ROWS] = {5, 4, 3, 2}; //connect to the row pinouts of the kpd
|
||||
byte colPins[COLS] = {8, 7, 6}; //connect to the column pinouts of the kpd
|
||||
|
||||
Keypad kpd = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
|
||||
|
||||
unsigned long loopCount;
|
||||
unsigned long startTime;
|
||||
String msg;
|
||||
|
||||
|
||||
void setup() {
|
||||
Serial.begin(9600);
|
||||
loopCount = 0;
|
||||
startTime = millis();
|
||||
msg = "";
|
||||
}
|
||||
|
||||
|
||||
void loop() {
|
||||
loopCount++;
|
||||
if ( (millis()-startTime)>5000 ) {
|
||||
Serial.print("Average loops per second = ");
|
||||
Serial.println(loopCount/5);
|
||||
startTime = millis();
|
||||
loopCount = 0;
|
||||
}
|
||||
|
||||
// Fills kpd.key[ ] array with up-to 10 active keys.
|
||||
// Returns true if there are ANY active keys.
|
||||
if (kpd.getKeys())
|
||||
{
|
||||
for (int i=0; i<LIST_MAX; i++) // Scan the whole key list.
|
||||
{
|
||||
if ( kpd.key[i].stateChanged ) // Only find keys that have changed state.
|
||||
{
|
||||
switch (kpd.key[i].kstate) { // Report active key state : IDLE, PRESSED, HOLD, or RELEASED
|
||||
case PRESSED:
|
||||
msg = " PRESSED.";
|
||||
break;
|
||||
case HOLD:
|
||||
msg = " HOLD.";
|
||||
break;
|
||||
case RELEASED:
|
||||
msg = " RELEASED.";
|
||||
break;
|
||||
case IDLE:
|
||||
msg = " IDLE.";
|
||||
}
|
||||
Serial.print("Key ");
|
||||
Serial.print(kpd.key[i].kchar);
|
||||
Serial.println(msg);
|
||||
}
|
||||
}
|
||||
}
|
||||
} // End loop
|
||||
@@ -0,0 +1,46 @@
|
||||
#include <Keypad.h>
|
||||
|
||||
|
||||
const byte ROWS = 4; //four rows
|
||||
const byte COLS = 3; //three columns
|
||||
char keys[ROWS][COLS] = {
|
||||
{'1','2','3'},
|
||||
{'4','5','6'},
|
||||
{'7','8','9'},
|
||||
{'*','0','#'}
|
||||
};
|
||||
byte rowPins[ROWS] = {5, 4, 3, 2}; //connect to the row pinouts of the keypad
|
||||
byte colPins[COLS] = {8, 7, 6}; //connect to the column pinouts of the keypad
|
||||
|
||||
Keypad kpd = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
|
||||
|
||||
unsigned long loopCount = 0;
|
||||
unsigned long timer_t = 0;
|
||||
|
||||
void setup(){
|
||||
Serial.begin(9600);
|
||||
|
||||
// Try playing with different debounceTime settings to see how it affects
|
||||
// the number of times per second your loop will run. The library prevents
|
||||
// setting it to anything below 1 millisecond.
|
||||
kpd.setDebounceTime(10); // setDebounceTime(mS)
|
||||
}
|
||||
|
||||
void loop(){
|
||||
char key = kpd.getKey();
|
||||
|
||||
// Report the number of times through the loop in 1 second. This will give
|
||||
// you a relative idea of just how much the debounceTime has changed the
|
||||
// speed of your code. If you set a high debounceTime your loopCount will
|
||||
// look good but your keypresses will start to feel sluggish.
|
||||
if ((millis() - timer_t) > 1000) {
|
||||
Serial.print("Your loop code ran ");
|
||||
Serial.print(loopCount);
|
||||
Serial.println(" times over the last second");
|
||||
loopCount = 0;
|
||||
timer_t = millis();
|
||||
}
|
||||
loopCount++;
|
||||
if(key)
|
||||
Serial.println(key);
|
||||
}
|
||||
Reference in New Issue
Block a user